170 research outputs found
Recommended from our members
PTFOS: Flexible and Absorbable Intracranial Electrodes for Magnetic Resonance Imaging
Intracranial electrocortical recording and stimulation can provide unique knowledge about functional brain anatomy in patients undergoing brain surgery. This approach is commonly used in the treatment of medically refractory epilepsy. However, it can be very difficult to integrate the results of cortical recordings with other brain mapping modalities, particularly functional magnetic resonance imaging (fMRI). The ability to integrate imaging and electrophysiological information with simultaneous subdural electrocortical recording/stimulation and fMRI could offer significant insight for cognitive and systems neuroscience as well as for clinical neurology, particularly for patients with epilepsy or functional disorders. However, standard subdural electrodes cause significant artifact in MRI images, and concerns about risks such as cortical heating have generally precluded obtaining MRI in patients with implanted electrodes. We propose an electrode set based on polymer thick film organic substrate (PTFOS), an organic absorbable, flexible and stretchable electrode grid for intracranial use. These new types of MRI transparent intracranial electrodes are based on nano-particle ink technology that builds on our earlier development of an EEG/fMRI electrode set for scalp recording. The development of MRI-compatible recording/stimulation electrodes with a very thin profile could allow functional mapping at the individual subject level of the underlying feedback and feed forward networks. The thin flexible substrate would allow the electrodes to optimally contact the convoluted brain surface. Performance properties of the PTFOS were assessed by MRI measurements, finite difference time domain (FDTD) simulations, micro-volt recording, and injecting currents using standard electrocortical stimulation in phantoms. In contrast to the large artifacts exhibited with standard electrode sets, the PTFOS exhibited no artifact due to the reduced amount of metal and conductivity of the electrode/trace ink and had similar electrical properties to a standard subdural electrode set. The enhanced image quality could enable routine MRI exams of patients with intracranial electrode implantation and could also lead to chronic implantation solutions
Converting sounds to meaning with ventral semantic language networks: integration of interdisciplinary data on brain connectivity, direct electrical stimulation and clinical disconnection syndromes
Numerous traditional linguistic theories propose that semantic language pathways convert sounds to meaningful concepts, generating interpretations ranging from simple object descriptions to communicating complex, analytical thinking. Although the dual-stream model of Hickok and Poeppel is widely employed, proposing a dorsal stream, mapping speech sounds to articulatory/phonological networks, and a ventral stream, mapping speech sounds to semantic representations, other language models have been proposed. Indeed, despite seemingly congruent models of semantic language pathways, research outputs from varied specialisms contain only partially congruent data, secondary to the diversity of applied disciplines, ranging from fibre dissection, tract tracing, and functional neuroimaging to neuropsychiatry, stroke neurology, and intraoperative direct electrical stimulation. The current review presents a comprehensive, interdisciplinary synthesis of the ventral, semantic connectivity pathways consisting of the uncinate, middle longitudinal, inferior longitudinal, and inferior fronto-occipital fasciculi, with special reference to areas of controversies or consensus. This is achieved by describing, for each tract, historical concept evolution, terminations, lateralisation, and segmentation models. Clinical implications are presented in three forms: (a) functional considerations derived from normal subject investigations, (b) outputs of direct electrical stimulation during awake brain surgery, and (c) results of disconnection syndromes following disease-related lesioning. The current review unifies interpretation of related specialisms and serves as a framework/thinking model for additional research on language data acquisition and integration
Functional geometry alignment and localization of brain areas
Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can cause substantial reorganization of functional systems. In such cases spatial registration based on anatomical data is only of limited value if the goal is to establish correspondences of functional areas among different individuals, or to localize potentially displaced active regions. Rather than rely on spatial alignment, we propose to perform registration in an alternative space whose geometry is governed by the functional interaction patterns in the brain. We first embed each brain into a functional map that reflects connectivity patterns during a fMRI experiment. The resulting functional maps are then registered, and the obtained correspondences are propagated back to the two brains. In application to a language fMRI experiment, our preliminary results suggest that the proposed method yields improved functional correspondences across subjects. This advantage is pronounced for subjects with tumors that affect the language areas and thus cause spatial reorganization of the functional regions.National Institutes of Health (U.S.) (P01 CA067165)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (NIBIB NAMIC U54- EB005149)National Institutes of Health (U.S.) (NCRR NAC P41-RR13218)National Science Foundation (U.S.) (CAREER Grant 0642971)National Science Foundation (U.S.) (Grant IIS/CRCNS 0904625
Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients
In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors.National Science Foundation (U.S.). Division of Information & Intelligent Systems (Collaborative Research in Computational Neuroscience Grant 0904625)National Science Foundation (U.S.) (CAREER Grant 0642971)National Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Neuroimaging Analysis Center (U.S.) P41-RR13218)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/Neuroimaging Analysis Center (U.S.) P41-EB-015902)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) R01HD067312)National Institutes of Health (U.S.) (P01CA067165)Brain Science FoundationKlarman Family FoundationEuropean Commission (FP7/2007–2013) n°257528 (KHRESMOI))European Commission (330003 (FABRIC))Austrian Science Fund (P 22578-B19 (PULMARCH)
Predicted Microscopic Cortical Brain Images for Optimal Craniotomy Positioning and Visualization
International audienceDuring a craniotomy, the skull is opened to allow surgeons to have access to the brain and perform the procedure. The position and size of this opening are chosen in a way to avoid critical structures, such as vessels, and facilitate the access to tumors. Planning the operation is done based on pre-operative images and does not account for intra-operative surgical events. We present a novel image-guided neurosurgical system to optimize the craniotomy opening. Using physics-based modeling we define a cortical deformation map that estimates the displacement field at candidate craniotomy locations. This deformation map is coupled with an image analogy algorithm that produces realistic synthetic images that can be used to predict both the geometry and the appearance of the brain surface before opening the skull. These images account for cortical vessel deformations that may occur after opening the skull and is rendered in a way that increases the surgeon's understanding and assimilation. Our method was tested retrospectively on patients data showing good results and demonstrating the feasibility of practical use of our system
Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt–onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways
Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital Subtraction Angiography
Although Digital Subtraction Angiography (DSA) is the most important imaging
for visualizing cerebrovascular anatomy, its interpretation by clinicians
remains difficult. This is particularly true when treating arteriovenous
malformations (AVMs), where entangled vasculature connecting arteries and veins
needs to be carefully identified.The presented method aims to enhance DSA image
series by highlighting critical information via automatic classification of
vessels using a combination of two learning models: An unsupervised machine
learning method based on Independent Component Analysis that decomposes the
phases of flow and a convolutional neural network that automatically delineates
the vessels in image space. The proposed method was tested on clinical DSA
images series and demonstrated efficient differentiation between arteries and
veins that provides a viable solution to enhance visualizations for clinical
use.Comment: Paper accepted for publication at SPIE Medical Imaging 202
Tensor-valued diffusion MRI in under 3 minutes: An initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors
Purpose: To evaluate the feasibility of a 3-minute b-tensor encoding protocol
for diffusion MRI-based assessment of the microscopic anisotropy and tissue
heterogeneity in a wide range of intracranial tumors. Methods: B-tensor
encoding was performed in 42 patients with intracranial tumors (gliomas,
meningiomas, adenomas, metastases). Microscopic anisotropy and tissue
heterogeneity were evaluated by estimating the anisotropic kurtosis ()
and isotropic kurtosis (), respectively. An extensive imaging protocol
was compared with a faster 3-minute protocol. Results: The fast imaging
protocol yielded parameters with characteristics in terms of bias and precision
similar to the full protocol. Glioblastomas had lower microscopic anisotropy
than meningiomas versus .
Metastases had higher tissue heterogeneity than both the
glioblastomas and meningiomas . Conclusion: Evaluation of the microscopic anisotropy and tissue
heterogeneity in intracranial tumor patients is feasible in clinically relevant
times frames.Comment: Submitted to Magnetic Resonance in Medicin
- …