30 research outputs found
HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion
Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis
Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants
In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially complemented by YFP-labeled human HuGnTI and that this is due to post-transcriptional events. In contrast to AtGnTI-YFP, only low levels of HuGnTI-YFP protein was detected in transgenic plants. In protoplast co-transfection experiments all GnTI-YFP fusion proteins co-localized with a Golgi marker protein, but only limited co-localization of AtGnTI and HuGnTI in the same plant protoplast. The partial alternative targeting of HuGnTI in plant protoplasts was alleviated by exchanging the membrane-anchor domain with that of AtGnTI, but in stably transformed cgl1-1 plants this chimeric GnTI still did not lead to full complementation of the cgl1-1 phenotype. Combined, the results indicate that activity of HuGnTI in plants is limited by a combination of reduced protein stability, alternative protein targeting and possibly to some extend to lower enzymatic performance of the catalytic domain in the plant biochemical environment
Transcriptional Feedback in Plant Growth and Defense by PIFs, BZR1, HY5, and MYC Transcription Factors
Growth of Arabidopsis is controlled by the activity of a set of bHLH and bZIP transcription factors of which phytochrome interacting factor4 (PIF4), BRASSINAZOLE-RESISTANT 1 (BZR1), and elongated hypocotyl 5 (HY5) have been most extensively studied. Defense responses are controlled by a set of MYC transcription factors of which MYC2 is best characterized. Moreover, hundreds of additional proteins (here named co-factors) have been identified which (in)directly may affect the expression or activity of these TFs. Thus, regulation of expression of genes encoding these co-factors becomes an integral part of understanding the molecular control of growth and defense. Here, we review RNA-seq data related to PIF, BZR1, HY5, or MYC activity, which indicate that 125 co-factor genes affecting PIFs, HY5, BZR1, or MYCs are themselves under transcriptional control by these TFs, thus revealing potential feedback regulation in growth and defense. The transcriptional feedback on co-factor genes related to PIF4, BZR1, and MYC2 by PIFs, BZR1, or MYCs, mostly results in negative feedback on PIF4, BZR1, or MYC2 activity. In contrast, transcription feedback on co-factor genes for HY5 by HY5 mostly results in positive feedback on HY5 activity. PIF4 and BZR1 exert a balanced regulating of photoreceptor-gene expression, whose products directly or indirectly affect PIF4, HY5, and MYC2 protein stability as a function of light. Growth itself is balanced by both multiple positive and multiple negative feedback on PIF4 and BZR1 activity. The balance between growth and defense is mostly through direct cross-regulation between HY5 and MYC2 as previously described, but also through potential transcriptional feedback on co-factor genes for MYC2 by PIF4, BZR1, and HY5 and through transcriptional feedback of co-factors for PIF4 and BZR1 by MYC2. The interlocking feed-forward and feed-backward transcriptional regulation of PIF4, BZR1, HY5, and MYC2 co-factors is a signature of robust and temporal control of signaling related to growth and defense
Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants
Quantitative differences in transgene expression between independent transformants are generally ascribed to different integration sites of the transgene (position effect). The contribution of spatial and temporal changes in transgene promoter activity to these position‐induced differences in transgene expression in planta are characterized, using the firefly luciferase (luc) reporter system. The activity of three different promoters (Cauliflower Mosaic Virus (CaMV) 35S, modified CaMV 35S and the promoter of an Arabidopsis thaliana Lipid Transfer Protein gene) was shown to vary not only among independent transformants, but also between leaves on the same plant and within a leaf. The differences in local LUC activity between leaves and within a leaf correlated with differences in local luc mRNA steady‐state levels. Imaging of LUC activity in the same leaves over a 50 d period, shows that individual transformants can show different types of temporal regulation. Both the spatial and the temporal type of luc transgene expression pattern are inherited by the next generation. It is concluded that previously reported position‐induced quantitative differences in transgene expression are probably an accumulated effect of differences in spatial and temporal regulation of transgene promoter activity
Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production
The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value
Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production
The use of the luciferase reporter system for in planta gene expression studies
The properties of the firefly luciferase (LUC) make it a very good nondestructive reporter to quantify and image transgene promoter activity in plants. The short half-life of the LUC mRNA and protein, and the very limited regeneration of the LUC protein after reacting with luciferin, enables monitoring of changes in gene activity with a high time resolution. However, the ease at which luciferase activity is measuredin planta, using a light sensitive camera system (2D-luminometer), contrasts sharply with the complications that arise from interpreting the results. A variegated pattern of luciferase activity, that is often observed inin planta measurements, might either be caused by differences in influx, availability of the substrates (luciferin, oxygen, ATP) or by local differences in reporter gene activity. Here we tested the possible contribution of differences in the availability of each substrate to the variegatedin planta luciferase activity, and we show whenin planta luciferase activity is measured under substrate equilibrium conditions and can be related to the promoter activity of the reporter gene. Furthermore, we demonstrate the effects of protein stability, apparent half-life of luciferase activity, regeneration of luciferase and pH on thein vivo andin vitro luciferase measurements. The combined results give the prerequisites for the correct utilisation of the luciferase reporter system, especially forin vivo gene expression studies in plant research
Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production
The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.</p