8 research outputs found

    Widely Tunable Infrared Antennas Using Free Carrier Refraction

    No full text
    We demonstrate tuning of infrared Mie resonances by varying the carrier concentration in doped semiconductor antennas. We fabricate spherical silicon and germanium particles of varying sizes and doping concentrations. Single-particle infrared spectra reveal electric and magnetic dipole, quadrupole, and hexapole resonances. We subsequently demonstrate doping-dependent frequency shifts that follow simple Drude models, culminating in the emergence of plasmonic resonances at high doping levels and long wavelengths. These findings demonstrate the potential for actively tuning infrared Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable metamaterials

    Lanthanide Modification of CdSe/ZnS Core/Shell Quantum Dots

    No full text
    Lanthanide-modified CdSe quantum dots (CdSe­(Ln) QDs) have been prepared by heating a solution of Cd­(oleate)<sub>2</sub>, SeO<sub>2</sub>, and Ln­(bipy)­(S<sub>2</sub>CNEt<sub>2</sub>)<sub>3</sub> (bipy = 2,2′-bipyridine) to 180–190 °C for 10–15 min. The elemental compositions of the resulting CdSe­(Ln) cores and CdSe­(Ln)/ZnS core/shell QDs show this route to be highly reproducible. The optical absorption spectra of these composite materials are similar to those of the unmodified nanocrystals, but the QD-centered band edge photoluminescence (PL) is partially quenched. The time-gated emission and excitation spectra of the CdSe­(Ln) cores display sensitized lanthanide-centered PL upon higher energy excitation of the nanocrystal host but not upon excitation at the lowest energy QD absorption band. Growth of the ZnS shell led to the depletion of about 60% of the lanthanide ions present together with depletion of nearly all of the lanthanide-centered PL. On these bases, we conclude that the lanthanide-centered PL from the CdSe­(Ln) cores originates with Ln<sup>3+</sup>-related trap states associated with the QD surface

    Average and Local Structural Origins of the Optical Properties of the Nitride Phosphor La<sub>3–<i>x</i></sub>Ce<sub><i>x</i></sub>Si<sub>6</sub>N<sub>11</sub> (0 < <i>x</i> ≤ 3)

    No full text
    Structural intricacies of the orange-red nitride phosphor system La<sub>3–<i>x</i></sub>Ce<sub><i>x</i></sub>Si<sub>6</sub>N<sub>11</sub> (0 < <i>x</i> ≤ 3) have been elucidated using a combination of state-of-the art tools, in order to understand the origins of the exceptional optical properties of this important solid-state lighting material. In addition, the optical properties of the end-member (<i>x</i> = 3) compound, Ce<sub>3</sub>Si<sub>6</sub>N<sub>11</sub>, are described for the first time. A combination of synchrotron powder X-ray diffraction and neutron scattering is employed to establish site preferences and the rigid nature of the structure, which is characterized by a high Debye temperature. The high Debye temperature is also corroborated from ab initio electronic structure calculations. Solid-state <sup>29</sup>Si nuclear magnetic resonance, including paramagnetic shifts of <sup>29</sup>Si spectra, are employed in conjunction with low-temperature electron spin resonance studies to probes of the local environments of Ce ions. Detailed wavelength-, time-, and temperature-dependent luminescence properties of the solid solution are presented. Temperature-dependent quantum yield measurements demonstrate the remarkable thermal robustness of luminescence of La<sub>2.82</sub>Ce<sub>0.18</sub>Si<sub>6</sub>N<sub>11</sub>, which shows little sign of thermal quenching, even at temperatures as high as 500 K. This robustness is attributed to the highly rigid lattice. Luminescence decay measurements indicate very short decay times (close to 40 ns). The fast decay is suggested to prevent strong self-quenching of luminescence, allowing even the end-member compound Ce<sub>3</sub>Si<sub>6</sub>N<sub>11</sub> to display bright luminescence

    Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions

    No full text
    Nanophotonic resonators offer the ability to design nanoscale optical elements and engineered materials with unconventional properties. Dielectric-based resonators intrinsically support a complete multipolar resonant response with low absorption, while metallic resonators provide extreme light confinement and enhanced photon–electron interactions. Here, we construct resonators out of a prototypical metal–insulator transition material, vanadium dioxide (VO<sub>2</sub>), and demonstrate switching between dielectric and plasmonic resonances. We first characterize the temperature-dependent infrared optical constants of VO<sub>2</sub> single crystals and thin-films. We then fabricate VO<sub>2</sub> wire arrays and disk arrays. We show that wire resonators support dielectric resonances at low temperatures, a damped scattering response at intermediate temperatures, and plasmonic resonances at high temperatures. In disk resonators, however, upon heating, there is a pronounced enhancement of scattering at intermediate temperatures and a substantial narrowing of the phase transition. These findings may lead to the design of novel nanophotonic devices that incorporate thermally switchable plasmonic–dielectric behavior

    Mapping Orientational Order in a Bulk Heterojunction Solar Cell with Polarization-Dependent Photoconductive Atomic Force Microscopy

    No full text
    New methods connecting molecular structure, self-organization, and optoelectronic performance are important for understanding the current generation of organic photovoltaic (OPV) materials. In high power conversion efficiency (PCE) OPVs, light-harvesting small-molecules or polymers are typically blended with fullerene derivatives and deposited in thin films, forming a bulk heterojunction (BHJ), a self-assembled three-dimensional nanostructure of electron donors and acceptors that separates and transports charges. Recent data suggest micrometer-scale orientational order of donor domains exists within this complex nanomorphology, but the link to the optoelectronic properties is yet unexplored. Here we introduce polarization-dependent, photoconductive atomic force microscopy (pd-pcAFM) as a combined probe of orientational order and nanoscale optoelectronic properties (∼20 nm resolution). Using the donor 7,7′-(4,4-bis(2-ethylhexyl)-4<i>H</i>-silolo[3,2-<i>b</i>:4,5-<i>b</i>′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl[2,2′-bithiophen]-5-yl)benzo[<i>c</i>][1,2,5]thiadiazole), p-DTS(FBTTh<sub>2</sub>)<sub>2</sub>, we show significant spatial dependence of the nanoscale photocurrent with polarized light in both pristine and BHJ blends (up to 7.0% PCE) due to the local alignment of the molecular transition dipoles. By mapping the polarization dependence of the nanoscale photocurrent, we estimate the molecular orientation and orientational order parameter. Liquid crystalline disclinations are observed in all films, in agreement with complementary electron microscopy experiments, and the order parameter exceeds 0.3. The results demonstrate the utility of pd-pcAFM to investigate the optical/structural anisotropy that exists within a well-performing BHJ system and its relationship to optoelectronic properties on both the nanometer and micrometer length scales

    Nitric Oxide Releasing Materials Triggered by Near-Infrared Excitation Through Tissue Filters

    No full text
    Novel materials for the phototherapeutic release of the bioregulator nitric oxide (nitrogen monoxide) are described. Also reported is a method for scanning these materials with a focused NIR beam to induce photouncaging while minimizing damage from local heating. The new materials consist of poly­(dimethylsiloxane) composites with near-infrared-to-visible upconverting nanoparticles (UCNPs) that are cast into a biocompatible polymer disk (PD). These PDs are then impregnated with the photochemical nitric oxide precursor Roussin’s black salt (RBS) to give UCNP_RBS_PD devices that generate NO when irradiated with 980 nm light. When the UCNP_RBS_PD composites were irradiated with NIR light through filters composed of porcine tissue, physiologically relevant NO concentrations were released, thus demonstrating the potential of such devices for minimally invasive phototherapeutic applications

    Nitric Oxide Releasing Materials Triggered by Near-Infrared Excitation Through Tissue Filters

    No full text
    Novel materials for the phototherapeutic release of the bioregulator nitric oxide (nitrogen monoxide) are described. Also reported is a method for scanning these materials with a focused NIR beam to induce photouncaging while minimizing damage from local heating. The new materials consist of poly­(dimethylsiloxane) composites with near-infrared-to-visible upconverting nanoparticles (UCNPs) that are cast into a biocompatible polymer disk (PD). These PDs are then impregnated with the photochemical nitric oxide precursor Roussin’s black salt (RBS) to give UCNP_RBS_PD devices that generate NO when irradiated with 980 nm light. When the UCNP_RBS_PD composites were irradiated with NIR light through filters composed of porcine tissue, physiologically relevant NO concentrations were released, thus demonstrating the potential of such devices for minimally invasive phototherapeutic applications

    Hybrid Iodide Perovskites of Divalent Alkaline Earth and Lanthanide Elements

    No full text
    Hybrid halide perovskites AMIIX3 (A = ammonium cation, MII = divalent cation, X = Cl, Br, I) have been extensively studied but have only previously been reported for the divalent carbon group elements Ge, Sn, and Pb. While they have displayed an impressive range of optoelectronic properties, the instability of GeII and SnII and the toxicity of Pb have stimulated significant interest in finding alternatives to these carbon group-based perovskites. Here, we describe the low-temperature solid-state synthesis of five new hybrid iodide perovskites centered around divalent alkaline earth and lanthanide elements, with the general formula AMIII3 (A = methylammonium, MA; MII = Sr, Sm, Eu, and A = formamidinium, FA; MII = Sr, Eu). Structural, calorimetric, optical, photoluminescence, and magnetic properties of these materials are reported
    corecore