78 research outputs found

    Inhibition studies of the protozoan α-carbonic anhydrase from Trypanosoma cruzi with phenols

    Get PDF
    The α-class carbonic anhydrase (CA, EC 4.2.1.1) from the protozoan pathogen Trypanosoma cruzi, TcCA, was investigated earlier for its inhibition with anions, sulphonamides, thiols and hydroxamates, well-known classes of CA inhibitors (CAIs). Here we present the first inhibition study of this enzyme with phenols, which possess a diverse CA inhibition mechanism compared to the previously investigated compounds, which are all zinc binders. Indeed, phenols are known to anchor to the zinc coordinated water molecule within the enzyme active site. In a series of 22 diversely substituted phenols, the best inhibitors were simple phenol, pyrocatechol, salicylic acid, 3,5-difluorophenol, 3,4-dihydroxy-benzoic acid, 3,6- dihydroxy-benzoic acid, caffeic acid and its des-hydroxy analog, with KIs of 1.8 - 7.3 µM. The least effective TcCA inhibitor was 3-chloro-4-amino-phenol (KI of 47.9 µM). Although it is not yet clear whether TcCA can be considered as an anti-Chagas disease drug target, as no animal model for investigating the antiprotozoan effects is available so far, finding effective in vitro inhibitors may be a first relevant step towards new antiprotozoal agents.publishedVersionPeer reviewe

    Neural Filtering of Physiological Tremor Oscillations to Spinal Motor Neurons Mediates Short-Term Acquisition of a Skill Learning Task

    Get PDF
    The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units’ coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervoussystem acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neuralcomponents unrelated to the specific task

    Calixarenes Incorporating Sulfonamide Moieties: Versatile Ligands for Carbonic Anhydrases Inhibition

    Get PDF
    Carbonic anhydrases (CAs) continue to represent a relevant pharmaceutical target. The need of selective inhibitors and the involvement of these metalloenzymes in many multifaceted diseases boost the search for new ligands able to distinguish among the different CA isoforms, and for multifunctional systems simultaneously able to inhibit CAs and to interfere with other pathological events by interacting with additional targets. In this work, we successfully explored the possibility of preparing new CAs ligands by combining calixarenes with benzensulfonamide units. Inhibition tests towards three human CA isoforms evidenced, for some of the ligands, Ki values in the nanomolar range and promising selectivity. X-ray and molecular modeling studies provided information on the mode of binding of these calixarene derivatives. Thanks to the encouraging results and the structural features typical of the calixarene scaffold, it is then possible to plan for the future the design of multifunctional inhibitors for this class of widely spread enzymes

    Design and synthesis of sulfonamides incorporating a biotin moiety: Carbonic anhydrase inhibitory effects, antiproliferative activity and molecular modeling studies

    Get PDF
    : Sulfonamides constitute an important class of classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Herein we have accomplished the conjugation of biotin with an ample number of sulfonamide motifs with the aim of testing them in vitro as inhibitors of the human carbonic anhydrase (hCA) isoforms I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). Most of these newly synthesized compounds exhibited interesting inhibition profiles, with activities in the nanomolar range. The presence of a 4-F-C6H4 moiety, also found in SLC-0111, afforded an excellent selectivity towards the tumor-associated hypoxia-induced hCA isoform XII with an inhibition constant (KI) of 4.5 nM. The 2-naphthyl derivative was the most potent inhibitor against hCA IX (KI = 6.2 nM), 4-fold stronger than AAZ (KI = 25 nM) with very good selectivity. Some compounds were chosen for antiproliferative activity testing against a panel of 3 human tumor cell lines, one compound showing anti-proliferative activity on glioblastoma, triple-negative breast cancer, and pancreatic carcinoma cell lines

    Cloning, purification, kinetic and anion inhibition studies of a recombinant beta-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris

    Get PDF
    A beta-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCA beta has a significant catalytic activity for the physiological reaction, CO2 + H2O (sic) HCO3- + H+ with a k(cat) of 1.1 x 10(5) s(-1) and a k(cat)/K-m of 7.58 x 10(6) M-1 x s(-1). This activity was inhibited by acetazolamide (K-I of 0.46 mu M), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCA beta at millimolar concentrations, but sulfamide (K-I of 81 mu M), N,N-diethyldithiocarbamate (K-I of 67 mu M) and sulphamic acid (K-I of 6.2 mu M) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCA beta is subsequently proposed as a new drug target for which effective inhibitors can be designed.Peer reviewe
    corecore