16,248 research outputs found
Experimental study of laser detected magnetic resonance based on atomic alignment
We present an experimental study of the spectra produced by
optical/radio-frequency double resonance in which resonant linearly polarized
laser light is used in the optical pumping and detection processes. We show
that the experimental spectra obtained for cesium are in excellent agreement
with a very general theoretical model developed in our group and we investigate
the limitations of this model. Finally, the results are discussed in view of
their use in the study of relaxation processes in aligned alkali vapors.Comment: 8 pages, 9 figures. Submitted to Phys. Rev. A. Related to
physics/060523
Theory of double resonance magnetometers based on atomic alignment
We present a theoretical study of the spectra produced by
optical-radio-frequency double resonance devices, in which resonant linearly
polarized light is used in the optical pumping and detection processes. We
extend previous work by presenting algebraic results which are valid for atomic
states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary
geometries. The only restriction made is the assumption of low light intensity.
The results are discussed in view of their use in optical magnetometers
Superconductivity in the Sn-Ba-Sr-Y-Cu-O system
Since Bednorz and Muller discovered high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides have been synthesized. Here, researchers report the results of search for superconductivity in the compounds based on tin, which has a lone electron pair like Bi, Tl, Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3Ox, Sn1Ba1Ca1Cu3Ox, Sn1Ba1Mg1Cu3Ox, Sn1Sr1Ca1Cu3Ox, Sn1Sr1Mg1Cu3Ox, Sn1Ca1Mg1Cu3Ox. The initial components were oxides and carbonates of the appropriate elements. Standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3Ox showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3Ox was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperatures undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3Ox ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase two-valent cations Ba, Sr were partially substituted by univalent (K) and three-valent ones (Y)
The connected components of the space of Alexandrov surfaces
Denote by the set of all compact Alexandrov surfaces
with curvature bounded below by without boundary, endowed with the
topology induced by the Gromov-Hausdorff metric. We determine the connected
components of and of its closure
Shell closure effects studied via cluster decay in heavy nuclei
The effects of shell closure in nuclei via the cluster decay is studied. In
this context, we have made use of the Preformed Cluster Model () of Gupta
and collaborators based on the Quantum Mechanical Fragmentation Theory. The key
point in the cluster radioactivity is that it involves the interplay of close
shell effects of parent and daughter. Small half life for a parent indicates
shell stabilized daughter and long half life indicates the stability of the
parent against the decay. In the cluster decay of trans lead nuclei observed so
far, the end product is doubly magic lead or its neighbors. With this in our
mind we have extended the idea of cluster radioactivity. We investigated decay
of different nuclei where Zirconium is always taken as a daughter nucleus,
which is very well known deformed nucleus. The branching ratio of cluster decay
and -decay is also studied for various nuclei, leading to magic or
almost doubly magic daughter nuclei. The calculated cluster decay half-life are
in well agreement with the observed data. First time a possibility of cluster
decay in nucleus is predicted
Multi-Logarithmic Differential Forms on Complete Intersections
We construct a complex of sheaves of multi-logarithmic differential forms on a complex
analytic manifold with respect to a reduced complete intersection; and define the residue
map as a natural morphism from this complex onto the Barlet complex of regular meromorphic
differential forms: It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current
Characterizing normal crossing hypersurfaces
The objective of this article is to give an effective algebraic
characterization of normal crossing hypersurfaces in complex manifolds. It is
shown that a hypersurface has normal crossings if and only if it is a free
divisor, has a radical Jacobian ideal and a smooth normalization. Using K.
Saito's theory of free divisors, also a characterization in terms of
logarithmic differential forms and vector fields is found and and finally
another one in terms of the logarithmic residue using recent results of M.
Granger and M. Schulze.Comment: v2: typos fixed, final version to appear in Math. Ann.; 24 pages, 2
figure
- …
