16,248 research outputs found

    Experimental study of laser detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical/radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali vapors.Comment: 8 pages, 9 figures. Submitted to Phys. Rev. A. Related to physics/060523

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Superconductivity in the Sn-Ba-Sr-Y-Cu-O system

    Get PDF
    Since Bednorz and Muller discovered high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides have been synthesized. Here, researchers report the results of search for superconductivity in the compounds based on tin, which has a lone electron pair like Bi, Tl, Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3Ox, Sn1Ba1Ca1Cu3Ox, Sn1Ba1Mg1Cu3Ox, Sn1Sr1Ca1Cu3Ox, Sn1Sr1Mg1Cu3Ox, Sn1Ca1Mg1Cu3Ox. The initial components were oxides and carbonates of the appropriate elements. Standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3Ox showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3Ox was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperatures undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3Ox ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase two-valent cations Ba, Sr were partially substituted by univalent (K) and three-valent ones (Y)

    The connected components of the space of Alexandrov surfaces

    Full text link
    Denote by A(κ)\mathcal{A}(\kappa) the set of all compact Alexandrov surfaces with curvature bounded below by κ\kappa without boundary, endowed with the topology induced by the Gromov-Hausdorff metric. We determine the connected components of A(κ)\mathcal{A}(\kappa) and of its closure

    Shell closure effects studied via cluster decay in heavy nuclei

    Full text link
    The effects of shell closure in nuclei via the cluster decay is studied. In this context, we have made use of the Preformed Cluster Model (PCMPCM) of Gupta and collaborators based on the Quantum Mechanical Fragmentation Theory. The key point in the cluster radioactivity is that it involves the interplay of close shell effects of parent and daughter. Small half life for a parent indicates shell stabilized daughter and long half life indicates the stability of the parent against the decay. In the cluster decay of trans lead nuclei observed so far, the end product is doubly magic lead or its neighbors. With this in our mind we have extended the idea of cluster radioactivity. We investigated decay of different nuclei where Zirconium is always taken as a daughter nucleus, which is very well known deformed nucleus. The branching ratio of cluster decay and α\alpha-decay is also studied for various nuclei, leading to magic or almost doubly magic daughter nuclei. The calculated cluster decay half-life are in well agreement with the observed data. First time a possibility of cluster decay in 218U^{218}U nucleus is predicted

    Multi-Logarithmic Differential Forms on Complete Intersections

    Get PDF
    We construct a complex of sheaves of multi-logarithmic differential forms on a complex analytic manifold with respect to a reduced complete intersection; and define the residue map as a natural morphism from this complex onto the Barlet complex of regular meromorphic differential forms: It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current

    Characterizing normal crossing hypersurfaces

    Get PDF
    The objective of this article is to give an effective algebraic characterization of normal crossing hypersurfaces in complex manifolds. It is shown that a hypersurface has normal crossings if and only if it is a free divisor, has a radical Jacobian ideal and a smooth normalization. Using K. Saito's theory of free divisors, also a characterization in terms of logarithmic differential forms and vector fields is found and and finally another one in terms of the logarithmic residue using recent results of M. Granger and M. Schulze.Comment: v2: typos fixed, final version to appear in Math. Ann.; 24 pages, 2 figure
    corecore