40 research outputs found

    Luminescence control in hybrid perovskites and their applications

    Full text link
    [EN] Hybrid metal halide perovskites have emerged as promising semiconductor materials for photovoltaic applications as a consequence of their remarkable intrinsic optoelectronic properties and their compositional flexibility. However, these properties have also been found to be suitable for applications in other different fields. In particular, the photoluminescence properties of hybrid perovskites have demonstrated to give rise to efficient light emitting devices as well as lasing applications. In this manuscript we have reviewed the recent advances of hybrid perovskites in these fields paying attention to the compositional design of perovskites as a tool to modulate the luminescence properties of this class of devices.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and from the Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J. A. also thanks the Universitat Politecnica de Valencia for a postdoctoral scholarship.Albero-Sancho, J.; Garc√≠a G√≥mez, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C. 5(17):4098-4110. https://doi.org/10.1039/C7TC00714KS40984110517Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598rZhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., ‚Ķ Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. doi:10.1126/science.1254050Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. doi:10.1038/nature14133Muthu, C., Nagamma, S. R., & Nair, V. C. (2014). Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2,4,6-trinitrophenol. RSC Adv., 4(99), 55908-55911. doi:10.1039/c4ra07884eFang, Y., Dong, Q., Shao, Y., Yuan, Y., & Huang, J. (2015). Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 9(10), 679-686. doi:10.1038/nphoton.2015.156Tan, Z.-K., Moghaddam, R. S., Lai, M. L., Docampo, P., Higler, R., Deschler, F., ‚Ķ Friend, R. H. (2014). Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 9(9), 687-692. doi:10.1038/nnano.2014.149Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., ‚Ķ Sum, T. C. (2014). Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13(5), 476-480. doi:10.1038/nmat3911Docampo, P., & Bein, T. (2016). A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 49(2), 339-346. doi:10.1021/acs.accounts.5b00465Yang, D., Xie, C., Sun, J., Zhu, H., Xu, X., You, P., ‚Ķ Yu, S. F. (2016). Amplified Spontaneous Emission from Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. Advanced Optical Materials, 4(7), 1053-1059. doi:10.1002/adom.201600047Colella, S., Mazzeo, M., Rizzo, A., Gigli, G., & Listorti, A. (2016). The Bright Side of Perovskites. The Journal of Physical Chemistry Letters, 7(21), 4322-4334. doi:10.1021/acs.jpclett.6b01799Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B., & Herz, L. M. (2014). Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3‚ÄďxClx. The Journal of Physical Chemistry Letters, 5(8), 1300-1306. doi:10.1021/jz500434pWu, K., Bera, A., Ma, C., Du, Y., Yang, Y., Li, L., & Wu, T. (2014). Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys., 16(41), 22476-22481. doi:10.1039/c4cp03573aZhang, M., Yu, H., Lyu, M., Wang, Q., Yun, J.-H., & Wang, L. (2014). Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3‚ąíxClxfilms. Chem. Commun., 50(79), 11727-11730. doi:10.1039/c4cc04973jAlbero, J., Asiri, A. M., & Garc√≠a, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334fQuan, L. N., Yuan, M., Comin, R., Voznyy, O., Beauregard, E. M., Hoogland, S., ‚Ķ Sargent, E. H. (2016). Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society, 138(8), 2649-2655. doi:10.1021/jacs.5b11740Xu, H., Sun, J., Qin, A., Hua, J., Li, Z., Dong, Y., ‚Ķ Tang, B. Z. (2006). Functional Perovskite Hybrid of Polyacetylene Ammonium and Lead Bromide:¬† Synthesis, Light Emission, and Fluorescence Imagining. The Journal of Physical Chemistry B, 110(43), 21701-21709. doi:10.1021/jp0646269Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N., Fujimoto, Y., Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic‚ÄďInorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi:10.1021/jp4114305Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M. K., ‚Ķ De Angelis, F. (2014). Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin‚ÄďOrbit Coupling and Octahedra Tilting. Nano Letters, 14(6), 3608-3616. doi:10.1021/nl5012992Filip, M. R., Eperon, G. E., Snaith, H. J., & Giustino, F. (2014). Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 5(1). doi:10.1038/ncomms6757Papavassiliou, G. C., Vidali, M.-S., Pagona, G., Mousdis, G. A., Karousis, N., & Koutselas, I. (2015). Effects of organic moieties on the photoluminescence spectra of perovskite-type tin bromide based compounds. Journal of Physics and Chemistry of Solids, 79, 1-6. doi:10.1016/j.jpcs.2014.11.018Perumal, A., Shendre, S., Li, M., Tay, Y. K. E., Sharma, V. K., Chen, S., ‚Ķ Demir, H. V. (2016). High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 6(1). doi:10.1038/srep36733Niu, Y., Zhang, F., Bai, Z., Dong, Y., Yang, J., Liu, R., ‚Ķ Zhong, H. (2014). Aggregation-Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications. Advanced Optical Materials, 3(1), 112-119. doi:10.1002/adom.201400403Yangui, A., Garrot, D., Lauret, J. S., Lusson, A., Bouchez, G., Deleporte, E., ‚Ķ Boukheddaden, K. (2015). Optical Investigation of Broadband White-Light Emission in Self-Assembled Organic‚ÄďInorganic Perovskite (C6H11NH3)2PbBr4. The Journal of Physical Chemistry C, 119(41), 23638-23647. doi:10.1021/acs.jpcc.5b06211Dai, J., Zheng, H., Zhu, C., Lu, J., & Xu, C. (2016). Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3and CH(NH2)2PbBr3microstructures. Journal of Materials Chemistry C, 4(20), 4408-4413. doi:10.1039/c6tc00563bAhmad, S., Baumberg, J. J., & Vijaya Prakash, G. (2013). Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides. Journal of Applied Physics, 114(23), 233511. doi:10.1063/1.4851715Gauthron, K., Lauret, J.-S., Doyennette, L., Lanty, G., Al Choueiry, A., Zhang, S. J., ‚Ķ Deleporte, E. (2010). Optical spectroscopy of two-dimensional layered (C_6H_5C_2H_4-NH_3)_2-PbI_4 perovskite. Optics Express, 18(6), 5912. doi:10.1364/oe.18.005912Yangui, A., Pillet, S., Mlayah, A., Lusson, A., Bouchez, G., Triki, S., ‚Ķ Boukheddaden, K. (2015). Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4]. The Journal of Chemical Physics, 143(22), 224201. doi:10.1063/1.4936776Dohner, E. R., Jaffe, A., Bradshaw, L. R., & Karunadasa, H. I. (2014). Intrinsic White-Light Emission from Layered Hybrid Perovskites. Journal of the American Chemical Society, 136(38), 13154-13157. doi:10.1021/ja507086bAtourki, L., Vega, E., Mar√≠, B., Mollar, M., Ait Ahsaine, H., Bouabid, K., & Ihlal, A. (2016). Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3‚ąíxBrx (0 ‚ȧ x ‚ȧ 1) films. Applied Surface Science, 371, 112-117. doi:10.1016/j.apsusc.2016.02.207Kumawat, N. K., Tripathi, M. N., Waghmare, U., & Kabra, D. (2016). Structural, Optical, and Electronic Properties of Wide Bandgap Perovskites: Experimental and Theoretical Investigations. The Journal of Physical Chemistry A, 120(22), 3917-3923. doi:10.1021/acs.jpca.6b04138Yan, J., Zhang, B., Chen, Y., Zhang, A., & Ke, X. (2016). Improving the Photoluminescence Properties of Perovskite CH3NH3PbBr3-xClx Films by Modulating Organic Cation and Chlorine Concentrations. ACS Applied Materials & Interfaces, 8(20), 12756-12763. doi:10.1021/acsami.6b01303Gonzalez-Carrero, S., Galian, R. E., & P√©rez-Prieto, J. (2015). Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. Journal of Materials Chemistry A, 3(17), 9187-9193. doi:10.1039/c4ta05878jD‚ÄôInnocenzo, V., Srimath Kandada, A. R., De Bastiani, M., Gandini, M., & Petrozza, A. (2014). Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite. Journal of the American Chemical Society, 136(51), 17730-17733. doi:10.1021/ja511198fWei, M., Chung, Y.-H., Xiao, Y., & Chen, Z. (2015). Color tunable halide perovskite CH3NH3PbBr3‚ąíCl emission via annealing. Organic Electronics, 26, 260-264. doi:10.1016/j.orgel.2015.07.053Huang, H., Susha, A. S., Kershaw, S. V., Hung, T. F., & Rogach, A. L. (2015). Control of Emission Color of High Quantum Yield CH3NH3PbBr3Perovskite Quantum Dots by Precipitation Temperature. Advanced Science, 2(9), 1500194. doi:10.1002/advs.201500194Lv, X.-H., Liao, W.-Q., Li, P.-F., Wang, Z.-X., Mao, C.-Y., & Zhang, Y. (2016). Dielectric and photoluminescence properties of a layered perovskite-type organic‚Äďinorganic hybrid phase transition compound: NH3(CH2)5NH3MnCl4. Journal of Materials Chemistry C, 4(9), 1881-1885. doi:10.1039/c5tc04114gProtesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., ‚Ķ Kovalenko, M. V. (2015). Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 15(6), 3692-3696. doi:10.1021/nl5048779Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Grotevent, M. J., & Kovalenko, M. V. (2015). Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 15(8), 5635-5640. doi:10.1021/acs.nanolett.5b02404Wei, S., Yang, Y., Kang, X., Wang, L., Huang, L., & Pan, D. (2016). Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50‚Äď85% photoluminescence quantum yields. Chemical Communications, 52(45), 7265-7268. doi:10.1039/c6cc01500jBekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P., & Alivisatos, A. P. (2015). Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society, 137(51), 16008-16011. doi:10.1021/jacs.5b11199Palazon, F., Di Stasio, F., Akkerman, Q. A., Krahne, R., Prato, M., & Manna, L. (2016). Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 28(9), 2902-2906. doi:10.1021/acs.chemmater.6b00954Jellicoe, T. C., Richter, J. M., Glass, H. F. J., Tabachnyk, M., Brady, R., Dutton, S. E., ‚Ķ B√∂hm, M. L. (2016). Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 138(9), 2941-2944. doi:10.1021/jacs.5b13470Suta, M., Urland, W., Daul, C., & Wickleder, C. (2016). Photoluminescence properties of Yb2+ ions doped in the perovskites CsCaX3 and CsSrX3 (X = Cl, Br, and I) ‚Äď a comparative study. Physical Chemistry Chemical Physics, 18(19), 13196-13208. doi:10.1039/c6cp00085aKim, Y.-H., Cho, H., Heo, J. H., Kim, T.-S., Myoung, N., Lee, C.-L., ‚Ķ Lee, T.-W. (2014). Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Advanced Materials, 27(7), 1248-1254. doi:10.1002/adma.201403751Era, M., Morimoto, S., Tsutsui, T., & Saito, S. (1994). Organic‚Äźinorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Applied Physics Letters, 65(6), 676-678. doi:10.1063/1.112265Hattori, T., Taira, T., Era, M., Tsutsui, T., & Saito, S. (1996). Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chemical Physics Letters, 254(1-2), 103-108. doi:10.1016/0009-2614(96)00310-7Chondroudis, K., & Mitzi, D. B. (1999). Electroluminescence from an Organic‚ąíInorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers. Chemistry of Materials, 11(11), 3028-3030. doi:10.1021/cm990561tJaramillo-Quintero, O. A., Sanchez, R. S., Rincon, M., & Mora-Sero, I. (2015). Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. The Journal of Physical Chemistry Letters, 6(10), 1883-1890. doi:10.1021/acs.jpclett.5b00732Kumawat, N. K., Dey, A., Kumar, A., Gopinathan, S. P., Narasimhan, K. L., & Kabra, D. (2015). Band Gap Tuning of CH3NH3Pb(Br1‚ÄďxClx)3 Hybrid Perovskite for Blue Electroluminescence. ACS Applied Materials & Interfaces, 7(24), 13119-13124. doi:10.1021/acsami.5b02159Wong, A. B., Lai, M., Eaton, S. W., Yu, Y., Lin, E., Dou, L., ‚Ķ Yang, P. (2015). Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 15(8), 5519-5524. doi:10.1021/acs.nanolett.5b02082Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., & McGehee, M. D. (2015). Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 6(1), 613-617. doi:10.1039/c4sc03141ePathak, S., Sakai, N., Wisnivesky Rocca Rivarola, F., Stranks, S. D., Liu, J., Eperon, G. E., ‚Ķ Snaith, H. J. (2015). Perovskite Crystals for Tunable White Light Emission. Chemistry of Materials, 27(23), 8066-8075. doi:10.1021/acs.chemmater.5b03769Wang, H.-C., Lin, S.-Y., Tang, A.-C., Singh, B. P., Tong, H.-C., Chen, C.-Y., ‚Ķ Liu, R.-S. (2016). Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angewandte Chemie International Edition, 55(28), 7924-7929. doi:10.1002/anie.201603698Romaner, L., Pogantsch, A., Scandiucci de Freitas, P., Scherf, U., Gaal, M., Zojer, E., & List, E. J. W. (2003). The Origin of Green Emission in Polyfluorene-Based Conjugated Polymers: On-Chain Defect Fluorescence. Advanced Functional Materials, 13(8), 597-601. doi:10.1002/adfm.200304360Hoye, R. L. Z., Chua, M. R., Musselman, K. P., Li, G., Lai, M., Tan, Z., ‚Ķ Credgington, D. (2015). Enhanced Performance in Fluorene‚ÄźFree Organometal Halide Perovskite Light‚ÄźEmitting Diodes using Tunable, Low Electron Affinity Oxide Electron Injectors. Advanced Materials, 27(8), 1414-1419. doi:10.1002/adma.201405044Shi, Z.-F., Sun, X.-G., Wu, D., Xu, T.-T., Zhuang, S.-W., Tian, Y.-T., ‚Ķ Du, G.-T. (2016). High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure. Nanoscale, 8(19), 10035-10042. doi:10.1039/c6nr00818fJiao, B., Zhu, X., Wu, W., Dong, H., Xia, B., Xi, J., ‚Ķ Wu, Z. (2016). A facile one-step solution deposition via non-solvent/solvent mixture for efficient organometal halide perovskite light-emitting diodes. Nanoscale, 8(21), 11084-11090. doi:10.1039/c6nr01092jLi, G., Tan, Z.-K., Di, D., Lai, M. L., Jiang, L., Lim, J. H.-W., ‚Ķ Greenham, N. C. (2015). Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Letters, 15(4), 2640-2644. doi:10.1021/acs.nanolett.5b00235Zhang, X., Lin, H., Huang, H., Reckmeier, C., Zhang, Y., Choy, W. C. H., & Rogach, A. L. (2016). Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 16(2), 1415-1420. doi:10.1021/acs.nanolett.5b04959Yu, J. C., Kim, D. B., Jung, E. D., Lee, B. R., & Song, M. H. (2016). High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 8(13), 7036-7042. doi:10.1039/c5nr05604gLi, J., Bade, S. G. R., Shan, X., & Yu, Z. (2015). Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials, 27(35), 5196-5202. doi:10.1002/adma.201502490Bade, S. G. R., Li, J., Shan, X., Ling, Y., Tian, Y., Dilbeck, T., ‚Ķ Yu, Z. (2015). Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS Nano, 10(2), 1795-1801. doi:10.1021/acsnano.5b07506Ling, Y., Yuan, Z., Tian, Y., Wang, X., Wang, J. C., Xin, Y., ‚Ķ Gao, H. (2015). Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials, 28(2), 305-311. doi:10.1002/adma.201503954Xing, J., Yan, F., Zhao, Y., Chen, S., Yu, H., Zhang, Q., ‚Ķ Xiong, Q. (2016). High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 10(7), 6623-6630. doi:10.1021/acsnano.6b01540Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., ‚Ķ Lee, T.-W. (2015). Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350(6265), 1222-1225. doi:10.1126/science.aad1818Wang, N., Cheng, L., Ge, R., Zhang, S., Miao, Y., Zou, W., ‚Ķ Huang, W. (2016). Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 10(11), 699-704. doi:10.1038/nphoton.2016.185Zhang, X., Xu, B., Zhang, J., Gao, Y., Zheng, Y., Wang, K., & Sun, X. W. (2016). All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3 -CsPb2 Br5 Composites. Advanced Functional Materials, 26(25), 4595-4600. doi:10.1002/adfm.201600958Kim, B. S., Yook, K. S., & Lee, J. Y. (2014). Above 20% external quantum efficiency in novel hybrid white organic light-emitting diodes having green thermally activated delayed fluorescent emitter. Scientific Reports, 4(1). doi:10.1038/srep06019Kao, T. S., Chou, Y.-H., Chou, C.-H., Chen, F.-C., & Lu, T.-C. (2014). Lasing behaviors upon phase transition in solution-processed perovskite thin films. Applied Physics Letters, 105(23), 231108. doi:10.1063/1.4903877Zhang, W., Peng, L., Liu, J., Tang, A., Hu, J.-S., Yao, J., & Zhao, Y. S. (2016). Controlling the Cavity Structures of Two-Photon-Pumped Perovskite Microlasers. Advanced Materials, 28(21), 4040-4046. doi:10.1002/adma.201505927Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., ‚Ķ Zhu, X.-Y. (2015). Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 14(6), 636-642. doi:10.1038/nmat4271Liao, Q., Hu, K., Zhang, H., Wang, X., Yao, J., & Fu, H. (2015). Perovskite Microdisk Microlasers Self-Assembled from Solution. Advanced Materials, 27(22), 3405-3410. doi:10.1002/adma.201500449Wang, K., Sun, W., Li, J., Gu, Z., Xiao, S., & Song, Q. (2016). Unidirectional Lasing Emissions from CH3NH3PbBr3 Perovskite Microdisks. ACS Photonics, 3(6), 1125-1130. doi:10.1021/acsphotonics.6b00209Liu, S., Sun, W., Gu, Z., Wang, K., Zhang, N., Xiao, S., & Song, Q. (2016). Tailoring the lasing modes in CH3NH3PbBr3 perovskite microplates via micro-manipulation. RSC Advances, 6(56), 50553-50558. doi:10.1039/c6ra06415aQin, L., Lv, L., Ning, Y., Li, C., Lu, Q., Zhu, L., ‚Ķ Hou, Y. (2015). Enhanced amplified spontaneous emission from morphology-controlled organic‚Äďinorganic halide perovskite films. RSC Advances, 5(125), 103674-103679. doi:10.1039/c5ra20167eChen, S., Roh, K., Lee, J., Chong, W. K., Lu, Y., Mathews, N., ‚Ķ Nurmikko, A. (2016). A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. ACS Nano, 10(4), 3959-3967. doi:10.1021/acsnano.5b08153Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic‚Äďorganic hybrid perovskite solar cells. Nature Materials, 13(9), 897-903. doi:10.1038/nmat4014Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. O., & Sargent, E. H. (2014). Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators. ACS Nano, 8(10), 10947-10952. doi:10.1021/nn504856gStranks, S. D., Wood, S. M., Wojciechowski, K., Deschler, F., Saliba, M., Khandelwal, H., ‚Ķ Snaith, H. J. (2015). Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 15(8), 4935-4941. doi:10.1021/acs.nanolett.5b00678Kogelnik, H., & Shank, C. V. (1971). STIMULATED EMISSION IN A PERIODIC STRUCTURE. Applied Physics Letters, 18(4), 152-154. doi:10.1063/1.1653605Saliba, M., Wood, S. M., Patel, J. B., Nayak, P. K., Huang, J., Alexander-Webber, J. A., ‚Ķ Riede, M. K. (2015). Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 28(5), 923-929. doi:10.1002/adma.201502608Deschler, F., Price, M., Pathak, S., Klintberg, L. E., Jarausch, D.-D., Higler, R., ‚Ķ Friend, R. H. (2014). High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters, 5(8), 1421-1426. doi:10.1021/jz5005285Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journa

    Photocatalytic CO2 Reduction to C2+Products

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright ¬© American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c00478[EN] There is a considerable interest in the development of photocatalytic CO2 conversion by sunlight, since this process has similarities with natural photosynthesis on which life on Earth is based. At the moment, most of the efforts in this field have been aimed at increasing the productivity, rather than at the control of the product distribution. Particularly, compounds with two or more carbons (C2+) have higher added value than methane, carbon monoxide, or formate, which are typically the major products of CO2 reduction. This review focuses on those reports that have described the formation of compounds of two or more carbon atoms (C2+) in the photocatalytic CO2 reduction either by H2O or as H-2 as a source of electrons and protons. The existing literature has been organized according to the main factor considered to be responsible for the selectivity to C2+ products, including photocatalyst structuration, nature of the co-catalyst, influence of defects, and effects of surface plasmon band. Emphasis has been made on remarking the current empirical knowledge based on experimental results and the lack of predictive capability that could lead to the development of efficient photocatalytic systems for C2+ production.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and No. CTQ2018-89237-CO2R1) and Generalitat Valenciana (Prometeo 2017/83) is gratefully acknowledged.Albero-Sancho, J.; Peng, Y.; Garc√≠a G√≥mez, H. (2020). Photocatalytic CO2 Reduction to C2+Products. ACS Catalysis. 10(10):5734-5749. https://doi.org/10.1021/acscatal.0c00478573457491010Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686. doi:10.1016/j.apsusc.2016.09.093Zeng, S., Kar, P., Thakur, U. K., & Shankar, K. (2018). A review on photocatalytic CO2reduction using perovskite oxide nanomaterials. Nanotechnology, 29(5), 052001. doi:10.1088/1361-6528/aa9fb1Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42. doi:10.1016/j.jphotochemrev.2015.06.001Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6(8), 511-518. doi:10.1038/nphoton.2012.175Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209bZhang, T., & Lin, W. (2014). Metal‚Äďorganic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103fHao, Y., & Steinfeld, A. (2017). Fuels from water, CO 2 and solar energy. Science Bulletin, 62(16), 1099-1101. doi:10.1016/j.scib.2017.08.013Saeidi, S., Amin, N. A. S., & Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added products‚ÄĒA review and potential future developments. Journal of CO2 Utilization, 5, 66-81. doi:10.1016/j.jcou.2013.12.005Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3-4), 221-231. doi:10.1016/j.cattod.2009.08.015Huang, C.-H., & Tan, C.-S. (2014). A Review: CO2 Utilization. Aerosol and Air Quality Research, 14(2), 480-499. doi:10.4209/aaqr.2013.10.0326Jia, J., Wang, H., Lu, Z., O‚ÄôBrien, P. G., Ghoussoub, M., Duchesne, P., ‚Ķ Ozin, G. A. (2017). Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO2 with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 4(10). doi:10.1002/advs.201770052Hurtado, L., Natividad, R., & Garc√≠a, H. (2016). Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow. Catalysis Communications, 84, 30-35. doi:10.1016/j.catcom.2016.05.025Wu, J., Huang, Y., Ye, W., & Li, Y. (2017). CO2Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 4(11), 1700194. doi:10.1002/advs.201700194Seo, H., Katcher, M. H., & Jamison, T. F. (2016). Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nature Chemistry, 9(5), 453-456. doi:10.1038/nchem.2690Vu, N., Kaliaguine, S., & Do, T. (2019). Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‚ÄźDriven Photocatalytic Reduction of CO 2 into Fuels. Advanced Functional Materials, 29(31), 1901825. doi:10.1002/adfm.201901825Niu, J., Shen, S., Zhou, L., Liu, Z., Feng, P., Ou, X., & Qiang, Y. (2016). Synthesis and hydrogenation of anatase TiO2 microspheres composed of porous single crystals for significantly improved photocatalytic activity. RSC Advances, 6(67), 62907-62910. doi:10.1039/c6ra12053aNeaŇ£u, Ňě., Maci√°-Agull√≥, J. A., Concepci√≥n, P., & Garcia, H. (2014). Gold‚ÄďCopper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433kXiong, Z., Lei, Z., Kuang, C.-C., Chen, X., Gong, B., Zhao, Y., ‚Ķ Wu, J. C. S. (2017). Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 202, 695-703. doi:10.1016/j.apcatb.2016.10.001Zhai, Q., Xie, S., Fan, W., Zhang, Q., Wang, Y., Deng, W., & Wang, Y. (2013). Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure. Angewandte Chemie International Edition, 52(22), 5776-5779. doi:10.1002/anie.201301473Wei, W., & Jinlong, G. (2010). Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 5(1), 2-10. doi:10.1007/s11705-010-0528-3Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. (2017). Supported Catalysts for CO2 Methanation: A Review. Catalysts, 7(12), 59. doi:10.3390/catal7020059Mateo, D., Albero, J., & Garc√≠a, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Zhao, J., Yang, Q., Shi, R., Waterhouse, G. I. N., Zhang, X., Wu, L.-Z., ‚Ķ Zhang, T. (2020). FeO‚ÄďCeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 12(1). doi:10.1038/s41427-019-0171-5Xiao, J.-D., & Jiang, H.-L. (2018). Metal‚ÄďOrganic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 52(2), 356-366. doi:10.1021/acs.accounts.8b00521Wang, C., Sun, Z., Zheng, Y., & Hu, Y. H. (2019). Recent progress in visible light photocatalytic conversion of carbon dioxide. Journal of Materials Chemistry A, 7(3), 865-887. doi:10.1039/c8ta09865dVoiry, D., Shin, H. S., Loh, K. P., & Chhowalla, M. (2018). Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2(1). doi:10.1038/s41570-017-0105Lee, Y. Y., Jung, H. S., & Kang, Y. T. (2017). A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. Journal of CO2 Utilization, 20, 163-177. doi:10.1016/j.jcou.2017.05.019Yang, M.-Q., & Xu, Y.-J. (2016). Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 1(3), 185-200. doi:10.1039/c5nh00113gPeng, C., Reid, G., Wang, H., & Hu, P. (2017). Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. The Journal of Chemical Physics, 147(3), 030901. doi:10.1063/1.4985624Lei, Z., Xue, Y., Chen, W., Qiu, W., Zhang, Y., Horike, S., & Tang, L. (2018). MOFs-Based Heterogeneous Catalysts: New Opportunities for Energy-Related CO2 Conversion. Advanced Energy Materials, 8(32), 1801587. doi:10.1002/aenm.201801587Sun, Z., Talreja, N., Tao, H., Texter, J., Muhler, M., Strunk, J., & Chen, J. (2018). Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie International Edition, 57(26), 7610-7627. doi:10.1002/anie.201710509Chen, G., Waterhouse, G. I. N., Shi, R., Zhao, J., Li, Z., Wu, L., ‚Ķ Zhang, T. (2019). From Solar Energy to Fuels: Recent Advances in Light‚ÄźDriven C 1 Chemistry. Angewandte Chemie International Edition, 58(49), 17528-17551. doi:10.1002/anie.201814313U.S Energy Information Administration. https://www.eia.gov/.Jouny, M., Luc, W., & Jiao, F. (2018). General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial & Engineering Chemistry Research, 57(6), 2165-2177. doi:10.1021/acs.iecr.7b03514Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., & Ma, L.-L. (2007). Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 45(4), 717-721. doi:10.1016/j.carbon.2006.11.028Lee, C.-W., Antoniou Kourounioti, R., Wu, J. C. S., Murchie, E., Maroto-Valer, M., Jensen, O. E., ‚Ķ Ruban, A. (2014). Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization, 5, 33-40. doi:10.1016/j.jcou.2013.12.002Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., ‚Ķ Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609vHan, Q., Zhou, Y., Tang, L., Li, P., Tu, W., Li, L., ‚Ķ Zou, Z. (2016). Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Advances, 6(93), 90792-90796. doi:10.1039/c6ra19368dZhang, X., Han, F., Shi, B., Farsinezhad, S., Dechaine, G. P., & Shankar, K. (2012). Photocatalytic Conversion of Diluted CO2into Light Hydrocarbons Using Periodically Modulated Multiwalled Nanotube Arrays. Angewandte Chemie International Edition, 51(51), 12732-12735. doi:10.1002/anie.201205619Chen, G., Gao, R., Zhao, Y., Li, Z., Waterhouse, G. I. N., Shi, R., ‚Ķ Zhang, T. (2017). Alumina‚ÄźSupported CoFe Alloy Catalysts Derived from Layered‚ÄźDouble‚ÄźHydroxide Nanosheets for Efficient Photothermal CO 2 Hydrogenation to Hydrocarbons. Advanced Materials, 30(3), 1704663. doi:10.1002/adma.201704663Kim, W., Seok, T., & Choi, W. (2012). Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy & Environmental Science, 5(3), 6066. doi:10.1039/c2ee03338kPark, H., Ou, H.-H., Colussi, A. J., & Hoffmann, M. R. (2015). Artificial Photosynthesis of C1‚ÄďC3 Hydrocarbons from Water and CO2 on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots. The Journal of Physical Chemistry A, 119(19), 4658-4666. doi:10.1021/jp511329dLiu, L., Puga, A. V., Cored, J., Concepci√≥n, P., P√©rez-Dieste, V., Garc√≠a, H., & Corma, A. (2018). Sunlight-assisted hydrogenation of CO 2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Applied Catalysis B: Environmental, 235, 186-196. doi:10.1016/j.apcatb.2018.04.060Sorcar, S., Thompson, J., Hwang, Y., Park, Y. H., Majima, T., Grimes, C. A., ‚Ķ In, S.-I. (2018). High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products. Energy & Environmental Science, 11(11), 3183-3193. doi:10.1039/c8ee00983jBillo, T., Fu, F.-Y., Raghunath, P., Shown, I., Chen, W.-F., Lien, H.-T., ‚Ķ Chen, K.-H. (2017). Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction. Small, 14(2), 1702928. doi:10.1002/smll.201702928Sun, S., Watanabe, M., Wu, J., An, Q., & Ishihara, T. (2018). Ultrathin WO3¬∑0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity. Journal of the American Chemical Society, 140(20), 6474-6482. doi:10.1021/jacs.8b03316Gell√©, A., Jin, T., de la Garza, L., Price, G. D., Besteiro, L. V., & Moores, A. (2019). Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 120(2), 986-1041. doi:10.1021/acs.chemrev.9b00187Yu, S., Wilson, A. J., Heo, J., & Jain, P. K. (2018). Plasmonic Control of Multi-Electron Transfer and C‚ÄďC Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters, 18(4), 2189-2194. doi:10.1021/acs.nanolett.7b05410Chen, Q., Chen, X., Fang, M., Chen, J., Li, Y., Xie, Z., ‚Ķ Zheng, L. (2019). Photo-induced Au‚ÄďPd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 7(3), 1334-1340. doi:10.1039/c8ta09412hKibria, M. G., Edwards, J. P., Gabardo, C. M., Dinh, C., Seifitokaldani, A., Sinton, D., & Sargent, E. H. (2019). Electrochemical CO 2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 31(31), 1807166. doi:10.1002/adma.201807166Fu, J., Jiang, K., Qiu, X., Yu, J., & Liu, M. (2020). Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 32, 222-243. doi:10.1016/j.mattod.2019.06.009Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic Reduction of CO2on TiO2and Other Semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408. doi:10.1002/anie.201207199Unruh, D., Pabst, K., & Schaub, G. (2010). Fischer‚ąíTropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield. Energy & Fuels, 24(4), 2634-2641. doi:10.1021/ef9009185Klerk, A. l. In Fischer‚ÄďTropsch Refining; de Klerk, A., Ed. 2011; pp 73‚Äď103.Jager, B. In Studies in Surfactant Science and Catalysis, Vol. 119; Parmaliana, A., Sanfilippo, D., Frusteri, F., Vaccari, A., Arena, F., Eds. Elsevier, 1998; pp 25‚Äď34.Gu, B., Khodakov, A. Y., & Ordomsky, V. V. (2018). Selectivity shift from paraffins to őĪ-olefins in low temperature Fischer‚ÄďTropsch synthesis in the presence of carboxylic acids. Chemical Communications, 54(19), 2345-2348. doi:10.1039/c7cc08692jBrady, R. C., & Pettit, R. (1981). Mechanism of the Fischer-Tropsch reaction. The chain propagation step. Journal of the American Chemical Society, 103(5), 1287-1289. doi:10.1021/ja00395a081Zhang, Q., Deng, W., & Wang, Y. (2013). Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. Journal of Energy Chemistry, 22(1), 27-38. doi:10.1016/s2095-4956(13)60003-0Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer‚ÄďTropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 4(8), 2210-2229. doi:10.1039/c4cy00327fYue, W., Randorn, C., Attidekou, P. S., Su, Z., Irvine, J. T. S., & Zhou, W. (2009). Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Advanced Functional Materials, 19(17), 2826-2833. doi:10.1002/adfm.200900658Blankenship, R. E. Molecular Mechanims of Photosynthesis, 2nd Edition; Wiley Blackwell, 2002; Vol. 7, pp d765‚Äďd783.Ran, J., Jaroniec, M., & Qiao, S. (2018). Cocatalysts in Semiconductor‚Äźbased Photocatalytic CO 2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30(7), 1704649. doi:10.1002/adma.201704649Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 43(22), 7787-7812. doi:10.1039/c3cs60425jDu, H., Williams, C. T., Ebner, A. D., & Ritter, J. A. (2010). In Situ FTIR Spectroscopic Analysis of Carbonate Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc. Chemistry of Materials, 22(11), 3519-3526. doi:10.1021/cm100703ePanagiotopoulou, P., & Kondarides, D. I. (2009). Effects of alkali promotion of TiO2 on the chemisorptive properties and water‚Äďgas shift activity of supported noble metal catalysts. Journal of Catalysis, 267(1), 57-66. doi:10.1016/j.jcat.2009.07.014H√∂lzl, J.; Schulte, F. K. Work Function of Metals, Vol. 85; Springer: Berlin, 1979; pp 1‚Äď150.D‚ÄôArienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., ‚Ķ Morazzoni, F. (2011). Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals: A Probe To Evaluate the Role of Crystal Facets in Photocatalytic Processes. Journal of the American Chemical Society, 133(44), 17652-17661. doi:10.1021/ja204838sKong, M., Li, Y., Chen, X., Tian, T., Fang, P., Zheng, F., & Zhao, X. (2011). Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. Journal of the American Chemical Society, 133(41), 16414-16417. doi:10.1021/ja207826qNowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275-5300. doi:10.1021/jp077275mBai, S., Zhang, N., Gao, C., & Xiong, Y. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53, 296-336. doi:10.1016/j.nanoen.2018.08.058Sorescu, D. C., Al-Saidi, W. A., & Jordan, K. D. (2011). CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. The Journal of Chemical Physics, 135(12), 124701. doi:10.1063/1.3638181Yin, W.-J., Wen, B., Bandaru, S., Krack, M., Lau, M., & Liu, L.-M. (2016). The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface. Scientific Reports, 6(1). doi:10.1038/srep23298Deskins, N. A., Rousseau, R., & Dupuis, M. (2010). Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C, 114(13), 5891-5897. doi:10.1021/jp101155tRazzaq, A., Sinhamahapatra, A., Kang, T.-H., Grimes, C. A., Yu, J.-S., & In, S.-I. (2017). Efficient solar light photoreduction of CO 2 to hydrocarbon fuels via magnesiothermally reduced TiO 2 photocatalyst. Applied Catalysis B: Environmental, 215, 28-35. doi:10.1016/j.apcatb.2017.05.028Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., & Sun, D. D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Advanced Functional Materials, 20(23), 4175-4181. doi:10.1002/adfm.201001391Tu, W., Zhou, Y., Liu, Q., Yan, S., Bao, S., Wang, X., ‚Ķ Zou, Z. (2012). An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2into Methane and Ethane. Advanced Functional Materials, 23(14), 1743-1749. doi:10.1002/adfm.201202349Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448Hou, W., & Cronin, S. B. (2012). A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23(13), 1612-1619. doi:10.1002/adfm.201202148Zhang, X., Chen, Y. L., Liu, R.-S., & Tsai, D. P. (2013). Plasmonic photocatalysis. Reports on Progress in Physics, 76(4), 046401. doi:10.1088/0034-4885/76/4/046401Hou, W., Hung, W. H., Pavaskar, P., Goeppert, A., Aykol, M., & Cronin, S. B. (2011). Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis, 1(8), 929-936. doi:10.1021/cs2001434Montes-Navajas, P., Serra, M., & Garcia, H. (2013). Influence of the irradiation wavelength on the photocatalytic activity of Au‚ÄďPt nanoalloys supported on TiO2 for hydrogen generation from water. Catalysis Science & Technology, 3(9), 2252. doi:10.1039/c3cy00102dLiu, C., Han, X., Xie, S., Kuang, Q., Wang, X., Jin, M., ‚Ķ Zheng, L. (2012). Enhancing the Photocatalytic Activity of Anatase TiO2by Improving the Specific Facet-Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - An Asian Journal, 8(1), 282-289. doi:10.1002/asia.20120088

    Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity

    Full text link
    This is the peer reviewed version of the following article: Y. Peng, J. Albero, H. Garc√≠a, ChemCatChem 2019, 11, 6384, which has been published in final form at https://doi.org/10.1002/cctc.201901681. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Surface coating of benzidinium lead iodide perovskite has been successfully accomplished by silanization with three different silylating agents, obtaining samples with average thickness from 2 to 6 nm as revealed by transmission electron microscopy. The obtained (organo)silica-coated hybrid perovskites exhibit enhanced hydrophobic character and, therefore, increased stability against moisture. However, its photocatalytic activity towards the cis-to-trans isomerization of stilbene diminishes as a function of the coating thickness, although a notable activity for this photocatalytic reaction is still observed.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship.Peng, Y.; Albero-Sancho, J.; Garc√≠a G√≥mez, H. (2019). Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity. ChemCatChem. 11(24):6384-6390. https://doi.org/10.1002/cctc.201901681S638463901124Q. Jiang Y. Zhao X. Zhang X. Yang Y. Chen Z. Chu Q. Ye X. Li Z. Yin J. You Nat. Photonics2019.Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/c5cc06759fSaravanan, R., Gracia, F., & Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. Springer Series on Polymer and Composite Materials, 19-40. doi:10.1007/978-3-319-62446-4_2Bisquert, J., Cahen, D., Hodes, G., R√ľhle, S., & Zaban, A. (2004). Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 108(24), 8106-8118. doi:10.1021/jp0359283Kamat, P. V. (2017). Semiconductor Surface Chemistry as Holy Grail in Photocatalysis and Photovoltaics. Accounts of Chemical Research, 50(3), 527-531. doi:10.1021/acs.accounts.6b00528Boyd, C. C., Cheacharoen, R., Leijtens, T., & McGehee, M. D. (2018). Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 119(5), 3418-3451. doi:10.1021/acs.chemrev.8b00336Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M. S., & Haque, S. A. (2017). Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 8(1). doi:10.1038/ncomms15218Y. Peng J. Albero E. √Ālvarez H. Garc√≠a Sustainable Energy Fuels2019.Cortecchia, D., Neutzner, S., Srimath Kandada, A. R., Mosconi, E., Meggiolaro, D., De Angelis, F., ‚Ķ Petrozza, A. (2016). Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 139(1), 39-42. doi:10.1021/jacs.6b10390Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N., Fujimoto, Y., Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic‚ÄďInorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi:10.1021/jp4114305Albero, J., & Garc√≠a, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714kRonlan, A., Coleman, J., Hammerich, O., & Parker, V. D. (1974). Anodic oxidation of methoxybiphenyls. Effect of the biphenyl linkage on aromatic cation Radical and Dication Stability. Journal of the American Chemical Society, 96(3), 845-849. doi:10.1021/ja00810a033Talipov, M. R., Boddeda, A., Timerghazin, Q. K., & Rathore, R. (2014). Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals. The Journal of Physical Chemistry C, 118(37), 21400-21408. doi:10.1021/jp5082752Zapata, P. A., Huang, Y., Gonzalez-Borja, M. A., & Resasco, D. E. (2013). Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. Journal of Catalysis, 308, 82-97. doi:10.1016/j.jcat.2013.05.024Bu, J., & Rhee, H. (2000). Catalysis Letters, 65(1/3), 141-145. doi:10.1023/a:1019096617082Kuwahara, Y., Maki, K., Matsumura, Y., Kamegawa, T., Mori, K., & Yamashita, H. (2009). Hydrophobic Modification of a Mesoporous Silica Surface Using a Fluorine-Containing Silylation Agent and Its Application as an Advantageous Host Material for the TiO2 Photocatalyst. The Journal of Physical Chemistry C, 113(4), 1552-1559. doi:10.1021/jp809191vYoshida, W., Castro, R. P., Jou, J.-D., & Cohen, Y. (2001). Multilayer Alkoxysilane Silylation of Oxide Surfaces. Langmuir, 17(19), 5882-5888. doi:10.1021/la001780sBerhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., ‚Ķ Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kVelichenko, A. ., Amadelli, R., Baranova, E. ., Girenko, D. ., & Danilov, F. . (2002). Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 527(1-2), 56-64. doi:10.1016/s0022-0728(02)00828-8Shmychkova, O., Luk‚Äôyanenko, T., Amadelli, R., & Velichenko, A. (2014). Physico-chemical properties of PbO2-anodes doped with Sn4+and complex ions. Journal of Electroanalytical Chemistry, 717-718, 196-201. doi:10.1016/j.jelechem.2014.01.029Pradhan, S., Stavrinadis, A., Gupta, S., Bi, Y., Di Stasio, F., & Konstantatos, G. (2017). Trap-State Suppression and Improved Charge Transport in PbS Quantum Dot Solar Cells with Synergistic Mixed-Ligand Treatments. Small, 13(21), 1700598. doi:10.1002/smll.20170059

    Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material

    Full text link
    [EN] A new hybrid lead iodide material (HP1) having 4-vinylphenylene ammonium as the organic cation has been prepared. The structural formula based on chemical analysis of HP1 corresponds to PbI2.5(4-styrylammonium)(0.5). The crystallinity of HP1 was confirmed by powder X-ray diffraction and high resolution transmission electron microscopy. The presence of the styryl ammonium moiety in HP1 allows post-synthetic modification by radical copolymerization with styrene to obtain the HP2 material with higher hydrophobicity. Stability tests reveal that both HP1 and HP2 show hydrogen evolution in the dark, indicating about 0.6% partial decomposition of the hybrid material. This hydrogen evolution increases by a factor of 3 when HP1 and HP2 are exposed to visible light. X-ray photoelectron spectroscopy analysis shows an increase of NH2 groups and a decrease of NH3+ units suggesting that the origin of hydrogen evolution is the deprotonation of ammonium ions.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship.Peng, Y.; Albero-Sancho, J.; Garc√≠a G√≥mez, H. (2020). Synthesis, post-synthetic modification and stability of a 2D styryl ammonium lead iodide hybrid material. Dalton Transactions. 49(2):395-403. https://doi.org/10.1039/C9DT04285GS395403492Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547fEames, C., Frost, J. M., Barnes, P. R. F., O‚ÄôRegan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8497Kato, Y., Ono, L. K., Lee, M. V., Wang, S., Raga, S. R., & Qi, Y. (2015). Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Advanced Materials Interfaces, 2(13), 1500195. doi:10.1002/admi.201500195Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., & Bolink, H. J. (2013). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8(2), 128-132. doi:10.1038/nphoton.2013.341Christians, J. A., Manser, J. S., & Kamat, P. V. (2015). Multifaceted Excited State of CH3NH3PbI3. Charge Separation, Recombination, and Trapping. The Journal of Physical Chemistry Letters, 6(11), 2086-2095. doi:10.1021/acs.jpclett.5b00594Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., ‚Ķ Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341-344. doi:10.1126/science.1243982Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Gr√§tzel, M., ‚Ķ Sum, T. C. (2013). Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH 3 NH 3 PbI 3. Science, 342(6156), 344-347. doi:10.1126/science.1243167Albero, J., & Garc√≠a, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714kCorrea-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Gr√§tzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397kJeon, N. J., Na, H., Jung, E. H., Yang, T.-Y., Lee, Y. G., Kim, G., ‚Ķ Seo, J. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3(8), 682-689. doi:10.1038/s41560-018-0200-6Sahli, F., Werner, J., Kamino, B. A., Br√§uninger, M., Monnard, R., Paviet-Salomon, B., ‚Ķ Ballif, C. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 17(9), 820-826. doi:10.1038/s41563-018-0115-4Dhakshinamoorthy, A., Navalon, S., Corma, A., & Garcia, H. (2012). Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science, 5(11), 9217. doi:10.1039/c2ee21948dAlbero, J., Asiri, A. M., & Garc√≠a, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry A, 4(12), 4353-4364. doi:10.1039/c6ta00334fPark, S., Chang, W. J., Lee, C. W., Park, S., Ahn, H.-Y., & Nam, K. T. (2016). Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2(1). doi:10.1038/nenergy.2016.185Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994bSharma, S. K., Phadnis, C., Das, T. K., Kumar, A., Kavaipatti, B., Chowdhury, A., & Yella, A. (2019). Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials, 31(9), 3111-3117. doi:10.1021/acs.chemmater.8b04115Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., ‚Ķ Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kWang, R., Mujahid, M., Duan, Y., Wang, Z., Xue, J., & Yang, Y. (2019). A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 29(47), 1808843. doi:10.1002/adfm.201808843Ma, J., Fang, C., Chen, C., Jin, L., Wang, J., Wang, S., ‚Ķ Li, D. (2019). Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence. ACS Nano, 13(3), 3659-3665. doi:10.1021/acsnano.9b00302Tremblay, M.-H., Thouin, F., Leisen, J., Bacsa, J., Srimath Kandada, A. R., Hoffman, J. M., ‚Ķ Marder, S. R. (2019). (4NPEA)2PbI4 (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 √ó 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 141(11), 4521-4525. doi:10.1021/jacs.8b13207Spanopoulos, I., Hadar, I., Ke, W., Tu, Q., Chen, M., Tsai, H., ‚Ķ Kanatzidis, M. G. (2019). Uniaxial Expansion of the 2D Ruddlesden‚ÄďPopper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 141(13), 5518-5534. doi:10.1021/jacs.9b01327Febriansyah, B., Koh, T. M., John, R. A., Ganguly, R., Li, Y., Bruno, A., ‚Ķ England, J. (2018). Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through ŌÄ-Stacked Viologens. Chemistry of Materials, 30(17), 5827-5830. doi:10.1021/acs.chemmater.8b02038Zhao, Y.-Q., Ma, Q.-R., Liu, B., Yu, Z.-L., Yang, J., & Cai, M.-Q. (2018). Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2PbI4. Nanoscale, 10(18), 8677-8688. doi:10.1039/c8nr00997jByun, J., Cho, H., Wolf, C., Jang, M., Sadhanala, A., Friend, R. H., ‚Ķ Lee, T.-W. (2016). Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Advanced Materials, 28(34), 7515-7520. doi:10.1002/adma.201601369Li, N., Zhu, Z., Chueh, C.-C., Liu, H., Peng, B., Petrone, A., ‚Ķ Jen, A. K.-Y. (2016). Mixed Cation FAxPEA1-xPbI3with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Advanced Energy Materials, 7(1), 1601307. doi:10.1002/aenm.201601307Arabpour Roghabadi, F., Alidaei, M., Mousavi, S. M., Ashjari, T., Tehrani, A. S., Ahmadi, V., & Sadrameli, S. M. (2019). Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden‚ÄďPopper perovskite absorbers. Journal of Materials Chemistry A, 7(11), 5898-5933. doi:10.1039/c8ta10444aKhuong, K. S., Jones, W. H., Pryor, W. A., & Houk, K. N. (2005). The Mechanism of the Self-Initiated Thermal Polymerization of Styrene. Theoretical Solution of a Classic Problem. Journal of the American Chemical Society, 127(4), 1265-1277. doi:10.1021/ja0448667Yao, K., Wang, X., Li, F., & Zhou, L. (2015). Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chemical Communications, 51(84), 15430-15433. doi:10.1039/c5cc05879aBubnova, O. (2016). 2D materials: Hybrid interfaces. Nature Nanotechnology. doi:10.1038/nnano.2016.13Saidaminov, M. I., Abdelhady, A. L., Murali, B., Alarousu, E., Burlakov, V. M., Peng, W., ‚Ķ Bakr, O. M. (2015). High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 6(1). doi:10.1038/ncomms8586Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., ‚Ķ White, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1(18), 5628. doi:10.1039/c3ta10518kDou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., ‚Ķ Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660Milot, R. L., Sutton, R. J., Eperon, G. E., Haghighirad, A. A., Martinez Hardigree, J., Miranda, L., ‚Ķ Herz, L. M. (2016). Charge-Carrier Dynamics in 2D Hybrid Metal‚ÄďHalide Perovskites. Nano Letters, 16(11), 7001-7007. doi:10.1021/acs.nanolett.6b03114V√©ron, A. C., Linden, A., Leclaire, N. A., Roedern, E., Hu, S., Ren, W., ‚Ķ N√ľesch, F. A. (2018). One-Dimensional Organic‚ÄďInorganic Hybrid Perovskite Incorporating Near-Infrared-Absorbing Cyanine Cations. The Journal of Physical Chemistry Letters, 9(9), 2438-2442. doi:10.1021/acs.jpclett.8b00458Peng, Y., Albero, J., √Ālvarez, E., & Garc√≠a, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels, 3(9), 2356-2360. doi:10.1039/c9se00182dWang, S., Ono, L. K., Leyden, M. R., Kato, Y., Raga, S. R., Lee, M. V., & Qi, Y. (2015). Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 3(28), 14631-14641. doi:10.1039/c5ta03593gZhang, F., & Srinivasan, M. P. (2007). Multilayered Gold-Nanoparticle/Polyimide Composite Thin Film through Layer-by-Layer Assembly. Langmuir, 23(20), 10102-10108. doi:10.1021/la0635045Singh, T., √Ėz, S., Sasinska, A., Frohnhoven, R., Mathur, S., & Miyasaka, T. (2018). Sulfate‚ÄźAssisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali‚ÄźDoped TiO 2 Electron‚ÄźTransporting Layers. Advanced Functional Materials, 28(14), 1706287. doi:10.1002/adfm.201706287Yang, J., & Kelly, T. L. (2016). Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 56(1), 92-101. doi:10.1021/acs.inorgchem.6b01307Huang, W., Manser, J. S., Kamat, P. V., & Ptasinska, S. (2015). Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions. Chemistry of Materials, 28(1), 303-311. doi:10.1021/acs.chemmater.5b0412

    Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen

    Full text link
    [EN] The photocatalytic activity of NiO/Ni nanoparticles (NPs) supported on defective graphene (NiO/Ni-G) has been tested for the photoassisted CO2 reduction with H-2. NiO/Ni-G was prepared by H-2 reduction of NiCl2 adsorbed on few-layers defective G and storage under air. An optimal Ni loading of 23 wt% was found, reaching the maximum specific CH4 formation rate (642 mu mol CH4 g(Ni)(-1) h(-1) at 200 degrees C) and quantum yield of 1.98%. Under the same conditions Ni NPs supported on silica-alumina or NiO NPs exhibit notably lower specific CH4 production rates than NiO/Ni-G. It was found that H2O formed in the reaction has a detrimental influence on the photocatalytic activity and evidence supports that H2O desorption is one of the reasons why the system requires heating. Under continuous flow operation, undesirable water molecules were easier desorbed from the NiO/Ni-G photocatalyst than in the batch mode, reaching a steady specific CH4 production rate of 244.8 mu L h(-1) for 50 mg of NiO/Ni-G catalyst with a residence time of 3.1 s. Quenching experiments with electron donor of different oxidation potential (dimethylaniline, anisole and p-xylene) are compatible with a mechanism involving photoinduced charge separation.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV-2016-0683, Grapas and CTQ2015-69563-CO2-R1) and by the Generalitat Valencia (Prometeo 2013-014) is gratefully acknowledged. J. A. thanks the Universitat Politecnica de Valencia for a postdoctoral scholarship. D. M. also thanks Spanish Ministry of Science for PhD Scholarship.Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B Environmental. 224:563-571. https://doi.org/10.1016/j.apcatb.2017.10.071S56357122

    Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst

    Full text link
    [EN] Photoassisted CO2 methanation can be carried out efficiently at 250 degrees C using Cu2O nanoparticles supported on few layer graphene (Cu2O/G) as a photocatalyst. The Cu2O/G photocatalyst has been prepared by chemical reduction of a Cu salt (Cu(NO3)(2)) with ethylene glycol in the presence of defective graphene obtained from the pyrolysis of alginic acid at 900 degrees C under Ar flow. Using this photocatalyst a maximum specific CH4 formation rate of 14.93 mmol g(Cu2O)(-1) h(-1) and an apparent quantum yield of 7.84% were achieved, which are among the highest reported values for the gas-phase methanation reaction at temperatures below the Sabatier reaction temperature (4350 degrees C). It was found that the most probable reaction mechanism involves photoinduced electron transfer from the Cu2O/G photocatalyst to CO2, while evidence indicates that light-induced local temperature increase and H-2 activation are negligible. The role of the temperature in the process has been studied, the available data suggesting that heating is needed to desorb the H2O formed as the product during the methanation. The most probable reaction mechanism seems to follow a dissociative pathway involving detachment of oxygen atoms from CO2.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, grapas, and CTQ2015-69563-CO2-R1) and by the Generalitat Valenciana (Prometeo 2013014) is gratefully acknowledged. J. A. thanks the Universitat Politecnica de Valencia for a postdoctoral scholarship. D. M. also thanks the Spanish Ministry of Science for a PhD Scholarship.Mateo-Mateo, D.; Albero-Sancho, J.; Garc√≠a G√≥mez, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science. 10(11):2392-2400. https://doi.org/10.1039/c7ee02287eS239224001011Yuan, L., & Xu, Y.-J. (2015). Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 342, 154-167. doi:10.1016/j.apsusc.2015.03.050Ganesh, I. (2015). Solar fuels vis-√†-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 44, 904-932. doi:10.1016/j.rser.2015.01.019Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic Conversion of CO2into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626. doi:10.1002/adma.201400087Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008Y. Izumi , in Advances in CO2 Capture, Sequestration, and Conversion, American Chemical Society, 2015, ch. 1, vol. 1194, pp. 1‚Äď46INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0J. Albero and H.Garc√≠a, in Heterogeneous Photocatalysis: From Fundamentals to Green Applications, ed. J. C. Colmenares and Y.-J. Xu, Springer-Verlag Berlin Heidelberg, 1 edn, 2016, ch. 1, p. VIII, 41610.1007/978-3-662-48719-8Ozcan, O., Yukruk, F., Akkaya, E. U., & Uner, D. (2007). Dye sensitized CO2 reduction over pure and platinized TiO2. Topics in Catalysis, 44(4), 523-528. doi:10.1007/s11244-006-0100-zGonell, F., Puga, A. V., Juli√°n-L√≥pez, B., Garc√≠a, H., & Corma, A. (2016). Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental, 180, 263-270. doi:10.1016/j.apcatb.2015.06.019NeaŇ£u, Ňě., Maci√°-Agull√≥, J. A., Concepci√≥n, P., & Garcia, H. (2014). Gold‚ÄďCopper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433kXie, X., Kretschmer, K., & Wang, G. (2015). Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 7(32), 13278-13292. doi:10.1039/c5nr03338aLavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689Kumar, P., Mungse, H. P., Khatri, O. P., & Jain, S. L. (2015). Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO2 reduction under visible light irradiation. RSC Advances, 5(68), 54929-54935. doi:10.1039/c5ra05319fLatorre-S√°nchez, M., Esteve-Adell, I., Primo, A., & Garc√≠a, H. (2015). Innovative preparation of MoS2‚Äďgraphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 81, 587-596. doi:10.1016/j.carbon.2014.09.093An, X., Li, K., & Tang, J. (2014). Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem, 7(4), 1086-1093. doi:10.1002/cssc.201301194Xiong, Z., Luo, Y., Zhao, Y., Zhang, J., Zheng, C., & Wu, J. C. S. (2016). Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 18(19), 13186-13195. doi:10.1039/c5cp07854gXiang, Q., Cheng, B., & Yu, J. (2015). Graphene-Based Photocatalysts for Solar-Fuel Generation. Angewandte Chemie International Edition, 54(39), 11350-11366. doi:10.1002/anie.201411096Li, F., Zhang, L., Tong, J., Liu, Y., Xu, S., Cao, Y., & Cao, S. (2016). Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 27, 320-329. doi:10.1016/j.nanoen.2016.06.056Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., ‚Ķ Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609vLum, Y., Kwon, Y., Lobaccaro, P., Chen, L., Clark, E. L., Bell, A. T., & Ager, J. W. (2015). Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catalysis, 6(1), 202-209. doi:10.1021/acscatal.5b02399Zou, J.-P., Wu, D.-D., Luo, J., Xing, Q.-J., Luo, X.-B., Dong, W.-H., ‚Ķ Suib, S. L. (2016). A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2. ACS Catalysis, 6(10), 6861-6867. doi:10.1021/acscatal.6b01729Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2015). Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy, 13, 757-770. doi:10.1016/j.nanoen.2015.03.014Lavorato, C., Primo, A., Molinari, R., & Garc√≠a, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068mPrimo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., √Ālvaro, M., Candu, N., ‚Ķ Garc√≠a, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561Trandafir, M.-M., Florea, M., NeaŇ£u, F., Primo, A., Parvulescu, V. I., & Garc√≠a, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089White, J. L., Baruch, M. F., Pander, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., ‚Ķ Bocarsly, A. B. (2015). Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 115(23), 12888-12935. doi:10.1021/acs.chemrev.5b00370Puga, A. V. (2016). Light-Promoted Hydrogenation of Carbon Dioxide‚ÄĒAn Overview. Topics in Catalysis, 59(15-16), 1268-1278. doi:10.1007/s11244-016-0658-zIzumi, Y. (2013). Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257(1), 171-186. doi:10.1016/j.ccr.2012.04.018Marimuthu, A., Zhang, J., & Linic, S. (2013). Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science, 339(6127), 1590-1593. doi:10.1126/science.1231631Ren, J., Ouyang, S., Xu, H., Meng, X., Wang, T., Wang, D., & Ye, J. (2016). Targeting Activation of CO2and H2over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2Methanation in Flow-Type System. Advanced Energy Materials, 7(5), 1601657. doi:10.1002/aenm.201601657Liu, L., Zhong, K., Meng, L., Van Hemelrijck, D., Wang, L., & Glorieux, C. (2016). Temperature-sensitive photoluminescent CdSe-ZnS polymer composite film for lock-in photothermal characterization. Journal of Applied Physics, 119(22), 224902. doi:10.1063/1.4953591Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & Garc√≠a, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033Liu, X., Li, Z., Zhao, W., Zhao, C., Wang, Y., & Lin, Z. (2015). A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance. Journal of Materials Chemistry A, 3(37), 19148-19154. doi:10.1039/c5ta05508cMiao, B., Ma, S. S. K., Wang, X., Su, H., & Chan, S. H. (2016). Catalysis mechanisms of CO2 and CO methanation. Catalysis Science & Technology, 6(12), 4048-4058. doi:10.1039/c6cy00478

    Multilayer N-doped graphene films as photoelectrodes for H2 evolution

    Full text link
    [EN] Multilayer N-doped graphene photoelectrodes have been prepared following a straightforward one-step pyrolytic fabrication method. The N-doped graphene photoelectrodes have been demonstrated to work both as semitransparent electrodes and as efficient photoelectrocatalysts for H2 evolution at low bias. N-doped graphene photoelectrodes exhibited a constant H2 generation rate of 3.64 mmolh @1 cm2 at 0.2 V under 3443 Wm@2 irradiation for 17 h, reaching an applied-bias-compensated solar-to-hydrogen efficiency of 1.8%. The N-doped graphene photoelectrodes show light-intensity dependence as well as photocatalytic activity for H2 evolution in the UV/Vis spectral region. Impedance spectroscopy provides experimental evidence indicating that charge separation within N-doped graphene increases upon positive bias polarization of the photoelectrode.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, Grapas and CTQ2015-69153-C02-R1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J.A. also thanks the Universitat Politecnica de Valencia for a postdoctoral scholarship.García-Gómez, A.; Albero-Sancho, J.; García Gómez, H. (2017). Multilayer N-doped graphene films as photoelectrodes for H2 evolution. ChemPhotoChem. 1(9):388-392. https://doi.org/10.1002/cptc.201700049S3883921

    Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts

    Full text link
    [EN] A hybrid benzidinium lead iodide perovskite (formula: PbI(3)benzidinium(0.5)) (3) with a 1D structure has been synthesized and characterized. The hybrid perovskite exhibits visible light (lambda > 450 nm) photocatalytic activity to promote the photoinduced electron transfer cis-to-trans isomerization of stilbene. The solid photocatalyst undergoes changes in the particle morphology, but maintains the crystallinity.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and CTQ2015-69563-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship.Peng, Y.; Albero-Sancho, J.; Alvarez, E.; García Gómez, H. (2019). Hybrid benzidinium lead iodide perovskites with a 1D structure as photoinduced electron transfer photocatalysts. Sustainable Energy & Fuels. 3(9):2356-2360. https://doi.org/10.1039/c9se00182dS235623603

    Visible-light-induced tandem reaction of o-aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy

    Full text link
    [EN] MIL-100(Fe) and MIL-68(Fe), two Fe-based MOFs, were found to be active for oxidative condensation between alcohols and o-aminothiophenols to form 2-substituted benzothiazoles under visible light irradiation using oxygen (02) as oxidant. This reaction can be applied to a wide range of substrates with medium to high yield. Controlled experiments and ESR results revealed a superoxide radical (O-2(center dot-))-mediated pathway, which is derived from the reduction of O-2 by photogenerated Fe2+ on Fe-O clusters. The whole multistep reaction is limited by the step of the photo-oxidation of alcohols to aldehydes. MIL-100(Fe) showed catalytic performance superior to that of MIL-68(Fe) because its higher concentration of long-lived (mu s time scale) positive holes can be photogenerated over MIL-100(Fe), in contrast to MIL-68(Fe). This study not only provides an economical, sustainable, and thus green process for the production of 2-substituted benzothiazoles, but also illustrates the potential of using transient absorption spectroscopy as an important tool for understanding the photophysics of MOFs, which are believed to show great potential as multifunctional catalysts for light-induced organic transformations. (C) 2017 Elsevier Inc. All rights reserved.This work was supported by the 973 Program (2014CB239303), the NSFC (21273035), the National Key Technologies R&D Program of China (2014BAC13B03), and an Independent Research Project of the State Key Laboratory of Photocatalysis on Energy and Environment (2014A03). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1-R) is also gratefully acknowledged. Z. Li thanks the Award Program for Minjiang Scholar Professorship for financial support.Wang, D.; Albero-Sancho, J.; García Gómez, H.; Li, Z. (2017). Visible-light-induced tandem reaction of o-aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis. 349:156-162. https://doi.org/10.1016/j.jcat.2017.01.014S15616234

    Role of Defects on the Particle Size-Capacitance Relationship of Zn-Co Mixed Metal Oxide Supported on Heteroatom-Doped Graphenes as Supercapacitors

    Full text link
    [EN] Supercapacitors are considered among the most promising electrical energy storage devices, there being a need to achieve the highest possible energy storage density. Herein small mixed Zn-Co metal oxide nanoparticles are grown on doped graphene (O-, N- and, B-doped graphenes). The electrochemical properties of the resulting mixed Zn-Co metal oxide nanoparticles (4 nm) grown on B-doped graphene exhibit an outstanding specific capacitance of 2568 F g-1 at 2 A g-1 , ranking this B-doped graphene composite among the best performing electrodes. The energy storage capacity is also remarkable even at large current densities (i.e., 640 F g-1 at 40 A g-1 ). In contrast, larger nanoparticles are obtained using N- and O-doped graphenes as support, the resulting materials exhibiting lower performance. Besides energy storage, the Zn-Co oxide on B-doped graphene shows notable electrochemical performance and stability obtaining a maximum energy density of 77.6 W h Kg-1 at 850 W Kg-1 , a power density of 8500 W Kg-1 at 28.3 W h Kg-1 , and a capacitance retention higher than 85% after 5000 cycles. The smaller nanoparticle size and improved electrochemical performance on B-doped graphene-based devices are attributed to the higher defect density and nature of the dopant element on graphene.The authors gratefully acknowledge the financial support by the "MCIN/AEI/10.13039/501100011033/, the FEDER funds (PDI2021-126071-OB-C21)", the Generalitat Valenciana (Prometeo 2021-038), and the European Union project H2020-LC-CS3-2020-RES-RIA "Eco2Fuel"(grant agreement 101006701). J.H. thanks the Chinese Scholarship Council for doctoral fellowship.Hu, HJ.; Peng, Y.; Albero-Sancho, J.; García Gómez, H. (2022). Role of Defects on the Particle Size-Capacitance Relationship of Zn-Co Mixed Metal Oxide Supported on Heteroatom-Doped Graphenes as Supercapacitors. Advanced Science. 9(34):1-11. https://doi.org/10.1002/advs.20220431611193
    corecore