14 research outputs found

    Living Unimodal Growth of Polyion Complex Vesicles via Two-Dimensional Supramolecular Polymerization

    No full text
    Understanding the dynamic behavior of molecular self-assemblies with higher-dimensional structures remains a key challenge to obtaining well-controlled and monodispersed structures. Nonetheless, there exist few systems capable of realizing the mechanism of supramolecular polymerization at higher dimensions. Herein, we report the unique self-assembling behavior of polyion complexes (PICs) consisting of poly­(ethylene glycol)-polyelectrolyte block copolymer as an example of two-dimensional supramolecular living polymerization. Monodispersed and submicrometer unilamellar PIC vesicles (nano-PICsomes) displayed time-dependent growth while maintaining a narrow size distribution and a unilamellar structure. Detailed analysis of the system revealed that vesicle growth proceeded through the consumption of unit PICs (uPICs) composed of a single polycation/polyanion pair and was able to restart upon the further addition of isolated uPICs. Interestingly, the resulting vesicles underwent dissociation into uPICs in response to mechanical stress. These results clearly frame the growth as a two-dimensional supramolecular living polymerization of uPICs

    Ligand-Mediated Coating of Liposomes with Human Serum Albumin

    No full text
    Coating liposome surfaces with human serum albumin (HSA) can improve the colloidal stability and prevent opsonization. HSA coating via specific binding with alkyl ligands is promising because although the ligand-mediated coating is relatively stable it can spontaneously exchange with fresh HSA. However, to achieve surface coating with HSA, multiple hydrophobic ligands must be exposed to an aqueous medium prior to binding with HSA. This presents a challenge, as hydrophobic ligands tend to be buried in the liposomal membrane. Here we present the first HSA modification of liposome surfaces via alkyl ligands. We found that a relatively short alkyl ligand, or a long alkyl ligand with a terminal carboxylate, could be exposed on the liposome surface without causing aggregation of the liposomes and these ligands could subsequently bind HSA. The resulting HSA-coated liposomes were as inert as conventional PEGylated liposomes in terms of macrophage recognition

    Morphology Control in Water of Polyion Complex Nanoarchitectures of Double-Hydrophilic Charged Block Copolymers through Composition Tuning and Thermal Treatment

    No full text
    Polyion complexes (PICs) are attractive as eco-friendly materials, because they offer simple and fast preparation methods to exert various functionalities in aqueous medium. However, control of nanoarchitectures in PIC materials has not been fully realized, except for the case of micelles and unilamellar vesicles formed from block ionomers. Here, the procedure to control PIC nanoarchitectures with various morphologies was established for the first time by careful tuning in the composition of PICs made from PEG-based block-ionomers with a varying amount of homoionomers as additive to modulate the PEG weight fraction (<i>f</i><sub>PEG</sub>) in the obtained PICs. Accordingly, the variation in <i>f</i><sub>PEG</sub> from 12.1% to 6.5% induced vigorous transition in the microphase separated structures of PICs basically from micelle to lamella via cylindrical network. Notably, uniformed lamella with alternative layers of PEG and PIC domains was found at elevated temperature (70 °C), which, by lowering temperature, reversibly transformed to cylindrical PIC network apparently with connected aqueous channel in mesoscopic scale

    Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking

    No full text
    <div><p>Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.</p></div

    Adequately-Sized Nanocarriers Allow Sustained Targeted Drug Delivery to Neointimal Lesions in Rat Arteries

    No full text
    In atherosclerotic lesions, the endothelial barrier against the bloodstream can become compromised, resulting in the exposure of the extracellular matrix (ECM) and intimal cells beneath. In theory, this allows adequately sized nanocarriers in circulation to infiltrate into the intimal lesion intravascularly. We sought to evaluate this possibility using rat carotid arteries with induced neointima. Cy5-labeled polyethylene glycol-conjugated polyion complex (PIC) micelles and vesicles, with diameters of 40, 100, or 200 nm (PICs-40, PICs-100, and PICs-200, respectively) were intravenously administered to rats after injury to the carotid artery using a balloon catheter. High accumulation and long retention of PICs-40 in the induced neointima was confirmed by <i>in vivo</i> imaging, while the accumulation of PICs-100 and PICs-200 was limited, indicating that the size of nanocarriers is a crucial factor for efficient delivery. Furthermore, epirubicin-incorporated polymeric micelles with a diameter similar to that of PICs-40 showed significant curative effects in rats with induced neointima, in terms of lesion size and cell number. Specific and effective drug delivery to pre-existing neointimal lesions was demonstrated with adequate size control of the nanocarriers. We consider that this nanocarrier-based drug delivery system could be utilized for the treatment of atherosclerosis

    Alkaline Phosphatase-Catalyzed Amplification of a Fluorescence Signal for Flow Cytometry

    No full text
    Despite the expanding use of flow cytometry, its detection limit is not satisfactory for many antigen proteins with low copy numbers. Herein, we describe an alkaline phosphatase (AP)-based technique to amplify the fluorescence signal for cell staining applications. We designed a fluorescent substrate that acquires membrane permeability upon dephosphorylation by AP. By using the substrate, the fluorescence signal of cells in flow cytometry could be successfully amplified to give a much stronger signal than the cells labeled using a conventional fluorophore-modified antibody

    Short Peptide Motifs for Long-Lasting Anchoring to the Cell Surface

    No full text
    A rational design strategy has been developed for the construction of stable peptide-based anchors for the efficient modification of cell surfaces. Six types of peptide composed of five residues with divalent hydrophobic groups have been designed using this new strategy. Among them, a peptide with a sequence of NBD-Lys-Lys­(X)-Lys-Lys-Lys­(X)-NH<sub>2</sub> (NBD: fluorophore, Lys­(X): <i>N</i>-ε-palmitoyl-l-lysine) was found to show the highest modification efficacy and longevity in culture medium. The good performance of this peptide was attributed to (1) its high aqueous solubility, which allowed it to partition from the medium to the cell surface, and (2) the high binding affinity of the saturated palmitoyl groups to the cell membrane. We found that the distribution of the peptide was affected by recycling endosome, which enabled the representation of the peptide following its endocytotic disappearance from the cell membrane. Biotin was also presented on the cell surface using this peptide-based anchor to examine its recognition by streptavidin. The efficacy of the recognition process increased as the length of the oligoethylene glycol spacer increased, indicating that it was necessary for the biotin tag to move away from the membrane glycoproteins on the cell surface to facilitate its efficient recognition by streptavidin

    Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor

    No full text
    We developed a strategy to modify cell membranes with an artificial transmembrane receptor. Coulomb force on the receptor, caused by the membrane potential, was used to achieve membrane penetration. A hydrophobically modified cationic peptide was used as a membrane potential sensitive region that was connected to biotin through a transmembrane oligoethylene glycol (OEG) chain. This artificial receptor gradually disappeared from the cell membrane via penetration despite the presence of a hydrophilic OEG chain. However, when the receptor was bound to streptavidin (SA), it remained on the cell membrane because of the large and hydrophilic nature of SA
    corecore