28 research outputs found
Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)
The past few years have seen dramatic breakthroughs and spectacular and
puzzling discoveries in astrophysics and cosmology. In many cases, the new
observations can only be explained with the introduction of new fundamental
physics. Here we summarize some of these recent advances. We then describe
several problem in astrophysics and cosmology, ripe for major advances, whose
resolution will likely require new physics.Comment: 27 pages, 14 figure
Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group
A study of the current status of WIMP dark matter searches has been made in
the context of scientific and technical planning for a Deep Underground Science
and Engineering Laboratory (DUSEL) in the U.S. The table of contents follows:
1. Overview
2. WIMP Dark Matter: Cosmology, Astrophysics, and Particle Physics
3. Direct Detection of WIMPs
4. Indirect Detection of WIMPs
5. Dark Matter Candidates and New Physics in the Laboratory
6. Synergies with Other Sub-Fields
7. Direct Detection Experiments: Status and Future Prospects
8. Infrastructure
9. International Context
10. Summary and Outlook
11. AcknowledgmentsComment: Final working group report of 17 Feb 2007 updated to address reviewer
comments (Latex, 32 pages
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Snowmass 2021 CMB-S4 White Paper
This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
Recommended from our members
Limits on spin-independent wimp-nucleon interactions from the two-tower run of the cryogenic dark matter search
We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 kg-d for germanium and 12 kg-d for silicon targets after cuts, averaged over recoil energies 10-100 keV for a WIMP mass of 60GeV/c{sup 2}. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10{sup -43} cm{sup 2} from Ge, and 3 x 10{sup -42} cm{sup 2} from Si, for a WIMP mass of 60GeV/c{sup 2}. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results, and constrains predictions of supersymmetric models
Recommended from our members
CDMS, Supersymmetry and Extra Dimensions
This report talks about CDMS, Supersymmetry and Extra Dimension