5 research outputs found

    MOESM4 of Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues

    No full text
    Additional file 4. Chromatographic profiles of the sugar standards in the HPAEC method. As outlined in “Methods” section, the HPAEC analyses were carried out in two separate runs using two different programs (i.e. different columns and gradients) for each sample. In bold are the sugars quantified using the respective program. (A) Program 1 was used to quantify the amounts of fucose (Fuc), rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), galacturonic acid (GalA), and glucuronic acid (GlcA) on a Dionex PA20 column eluted using a NaOH/NaOAc gradient. (B) Program 2 was used to quantify the amounts of xylose (Xyl) and mannose (Man), which eluted as one peak in program 1, on a Dionex PA1 column eluted isocratically using 2 mM NaOH

    MOESM6 of Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus

    No full text
    Additional file 6. Glycosyl residue composition of (a) alcohol insoluble residue (AIR) and (b–h) wall fractions from stems of field-grown P. deltoides control and PtGAUT12.1-OE transgenic plants. Wall fractions were prepared by sequential extraction of AIR using increasingly harsh reagents: (b) 50 mM ammonium oxalate, (c) 50 mM Na2CO3, (d) 1 M KOH, (e) 4 M KOH, (f) 100 mM sodium chlorite (chlorite) and (g) 4 M KOH post-chlorite (4 M KOH PC). (h) The insoluble pellet remaining after all the extractions. Glycosyl residue composition was determined by GC–MS of trimetylsilyl (TMS) derivatives. Data are mean ± SE of three biological and two technical replicates, n = 5. *P < 0.05, **P < 0.001
    corecore