91 research outputs found
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of nonuniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from Μe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from interactions are crucial for the Deep
Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as
searches for physics beyond the standard model, supernova neutrino detection,
and solar neutrino measurements. This article describes the selection and
reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector.
ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and
operated at CERN as a charged particle test beam experiment. A sample of
low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy
scale with two techniques. An electron energy calibration based on a cosmic ray
muon sample uses calibration constants derived from measured and simulated
cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert
reconstructed charge to electron energy. In addition, the effects of detector
response to low-energy electron energy scale and its resolution including
readout electronics threshold effects are quantified. Finally, the relation
between the theoretical and reconstructed low-energy electron energy spectrum
is derived and the energy resolution is characterized. The low-energy electron
selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the
energy resolution improves from about 40% to 25% at 50~MeV. These results are
used to validate the expected capabilities of the DUNE far detector to
reconstruct low-energy electrons.Comment: 19 pages, 10 figure
Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non- uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is
to measure the MeV neutrinos produced by a Galactic
core-collapse supernova if one should occur during the lifetime of the
experiment. The liquid-argon-based detectors planned for DUNE are expected to
be uniquely sensitive to the component of the supernova flux, enabling
a wide variety of physics and astrophysics measurements. A key requirement for
a correct interpretation of these measurements is a good understanding of the
energy-dependent total cross section for charged-current
absorption on argon. In the context of a simulated extraction of
supernova spectral parameters from a toy analysis, we investigate the
impact of modeling uncertainties on DUNE's supernova neutrino
physics sensitivity for the first time. We find that the currently large
theoretical uncertainties on must be substantially reduced
before the flux parameters can be extracted reliably: in the absence of
external constraints, a measurement of the integrated neutrino luminosity with
less than 10\% bias with DUNE requires to be known to about 5%.
The neutrino spectral shape parameters can be known to better than 10% for a
20% uncertainty on the cross-section scale, although they will be sensitive to
uncertainties on the shape of . A direct measurement of
low-energy -argon scattering would be invaluable for improving the
theoretical precision to the needed level.Comment: 25 pages, 21 figure
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.This document was prepared by the DUNE collaboration using the resources of the Fermi National
Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User
Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No.
DE-AC02-07CH11359.
This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and
NSERC, Canada; CERN; MĆ MT, Czech Republic; ERDF, H2020-EU and MSCA, European Union;
CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, FundaciĂłn
âLa Caixaâ, Junta de AndalucĂa-FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF,
Switzerland; TĂBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and
NSF, United States of America. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231.
We are also thankful to Max Katz from NVIDIAÂź and Daniel Margala from NERSC for the
precious suggestions.Peer reviewe
- âŠ