125 research outputs found
Poly (ADP-Ribose) Polymerase Mediates Diabetes-Induced Retinal Neuropathy
Retinal neuropathy is an early event in the development of diabetic retinopathy. One of the potential enzymes that are activated by oxidative stress in the diabetic retina is poly (ADP-ribose) polymerase (PARP). We investigated the effect of the PARP inhibitor 1,5-isoquinolinediol on the expression of the neurodegeneration mediators and markers in the retinas of diabetic rats. After two weeks of streptozotocin-induced diabetes, rats were treated with 1,5-isoquinolinediol (3 mg/kg/day). After 4 weeks of diabetes, the retinas were harvested and the levels of reactive oxygen species (ROS) were determined fluorometrically and the expressions of PARP, phosporylated-ERK(1/2), BDNF, synaptophysin, glutamine synthetase (GS), and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, PARP-1/2, phosphorylated ERK(1/2), and cleaved caspase-3 were significantly increased, whereas the expressions of BDNF synaptophysin and GS were significantly decreased in the retinas of diabetic rats, compared to nondiabetic rats. Administration of 1,5-isoquinolinediol did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of PARP, ROS, ERK(1/2) phosphorylation, and cleaved caspase-3 and downregulation of BDNF, synaptophysin, and GS. These findings suggest a beneficial effect of the PARP inhibitor in increasing neurotrophic support and ameliorating early retinal neuropathy induced by diabetes
High-Mobility Group Box-1 and Endothelial Cell Angiogenic Markers in the Vitreous from Patients with Proliferative Diabetic Retinopathy
The aim of this study was to measure the levels of high-mobility group box-1 (HMGB1) in the vitreous fluid from patients with proliferative diabetic retinopathy (PDR) and to correlate its levels with clinical disease activity and the levels of vascular endothelial growth factor (VEGF), the angiogenic cytokine granulocyte-colony-stimulating factor (G-CSF), the endothelial cell angiogenic markers soluble vascular endothelial-cadherin (sVE-cadherin), and soluble endoglin (sEng). Vitreous samples from 36 PDR and 21 nondiabetic patients were studied by enzyme-linked immunosorbent assay. HMGB1, VEGF, sVE-cadherin, and sEng levels were significantly higher in PDR patients than in nondiabetics (P = 0.008; <0.001; <0.001; 0.003, resp.). G-CSF was detected in only 3 PDR samples. In the whole study group, there was significant positive correlation between the levels of HMGB1, and sVE-cadherin (r = 0.378, P = 0.007). In PDR patients, there was significant negative correlation between the levels of sVE-cadherin and sEng (r = −0.517, P = 0.0005). Exploratory regression analysis identified significant associations between active PDR and high levels of VEGF (odds ratio = 76.4; 95% confidence interval = 6.32–923) and high levels of sEng (odds ratio = 6.01; 95% confidence interval = 1.25–29.0). Our findings suggest that HMGB1, VEGF, sVE-cadherin and sEng regulate the angiogenesis in PDR
- …