113 research outputs found
The neuropsychology assessment for identifying dementia in parkinson’s disease patients using a deep neural network
Parkinson’s Disease (PD) patients have a high risk of developing dementia at least a year after the diagnosis. PD-Dementia affects both the physical and mental function that can gradually worsen the condition of the patients over time. This work proposed a framework for detecting dementia among PD patients based on neuropsychological assessment. This work classifies samples using the Montreal Cognitive Assessment (MoCA) scores as a guideline. It is classified into three categories, which are No Dementia, PD-MCI, and PD-Dementia. The work continues with designing a Deep Neural Network (DNN) architecture specific for analyzing electronic health records for PDDementia detection. Then, it compares the proposed model with the other five baseline methods. The experiment results present that the proposed DNN presents the highest result of 97.5%. This result shows that this proposed model is able to identify early dementia in PD patients from non-motor symptoms
The identification of RFID signal using k-means for pallet-level tagging
Radio Frequency Identification (RFID) applications are becoming increasingly popular in a myriad of areas, and therefore, an effective RFID technology-based location would offer a much-needed additional in tracking system. This research focuses on the identification of the location of passive RFID at the pallet-level, which uses the RFID signal strength to cluster the pallet level tagging through k-means. A comparison between the actual and the predicted level attained via the k-means clustering is evaluated through a multi-class performance metrics. It was demonstrated from the investigation that the k-means model is capable of achieving a classification accuracy of 69% and 67% for the train and test data, respectively
Effect of image compression using fast fourier transformation and discrete wavelet transformation on transfer learning wafer defect image classification
Automated inspection machines for wafer defects usually captured thousands of images on a large scale to preserve the detail of defect features. However, most transfer learning architecture requires smaller images as input images. Thus, proper compression is required to preserve the defect features whilst maintaining an acceptable classification accuracy. This paper reports on the effect of image compression using Fast Fourier Transformation and Discrete Wavelet Transformation on transfer learning wafer defect image classification. A total of 500 images with 5 classes with 4 defect classes and 1 non-defect class were split to 60:20:20 ratio for training, validating and testing using InceptionV3 and Logistic Regression classifier. However, the input images were compressed using Fast Fourier Transformation and Discrete Wavelet Transformation using 4 level decomposition and Debauchies 4 wavelet family. The images were compressed by 50%, 75%, 90%, 95%, and 99%. As a result, the Fast Fourier Transformation compression show an increase from 89% to 94% in classification accuracy up to 95% compression, while Discrete Wavelet Transformation shows consistent classification accuracy throughout albeit diminishing image quality. From the experiment, it can be concluded that FFT and DWT image compression can be a reliable method for image compression for grayscale image classification as the image memory space drop 56.1% while classification accuracy increased by 5.6% with 95% FFT compression and memory space drop 55.6% while classification accuracy increased 2.2% with 50% DWT compression
Heart disease prediction using case based reasoning (CBR)
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor's experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males
Identifying PTSD symptoms using machine learning techniques on social media
Post-traumatic stress disorder (PTSD) is a mental health illness brought on by watching or experiencing a horrific incident. Flashbacks, nightmares, acute anxiety, and uncontrolled thoughts about the unforgettable incident are the possible symptoms faced by PTSD sufferers. The PTSD diagnosis is usually done by a mental health specialist based on the symptoms that the person has, and the task is very time-consuming. Due to the widespread use of social media in recent years, it has opened up the opportunity to explore PTSD signs in users' postings on Twitter. The content-sharing feature available on this platform has allowed its users to share personal experiences, thoughts, and feelings that could reflect their psychological status. Thus, the goal of this work is to identify the PTSD symptom from text posting on Twitter. The crawled text posting is filtered and trained on selected machine learning and deep learning methods. The experiment results show that the support vector machine performed the best with 91% accuracy compared to others. This extracted model could be used in identifying PTSD symptoms on social media
Efficiency and accuracy of scheduling algorithms for final year project evaluation management system
Scheduling algorithms play a crucial role in optimizing the efficiency and precision of scheduling tasks, finding applications across various domains to enhance work productivity, reduce costs, and save time. This research paper conducts a comparative analysis of three algorithms: genetic algorithm, hill climbing algorithm, and particle swarm optimization algorithm, with a focus on evaluating their performance in scheduling presentations. The primary goal of this study is to assess the effectiveness of these algorithms and identify the most efficient one for handling presentation scheduling tasks, thereby minimizing the system's response time for generating schedules. The research takes into account various constraints, including evaluator availability, student and evaluator affiliations within research groups, and student-evaluator relationships where a student cannot be supervised by one of the evaluators. Considering these critical parameters and constraints, the algorithm assigns presentation slots, venues, and two evaluators to each student without encountering scheduling conflicts, ultimately producing a schedule based on the allocated slots for both students and evaluators
The condition based monitoring for bearing health
Bearing is a small component that widely uses in industries, either in rotary machines or shafts. Faulty in bearing might cause massive downtime in the industries, which lead to loss of revenue. This paper intends to find the consequential statistical time-domain-based features that can be used in classification from accelerometry signals for the bearing condition. An accelerometer was used as the data logger device to attain the condition signals from the bearing. Machinery Failure Prevention Technology (MFPT) online dataset has three different bearing conditions: baseline condition, inner faulty condition, and outer faulty condition. Extraction of eight statistical time-domain features was done, which is root-mean-square (RMS), minimum (Min), maximum (Max), mean, median, standard deviation, variance, and skewness. The identification of informative attributes was made using a filter-based method, in which the scoring is done by using the Information gain ratio. For the extracted features, the data splitting of training data to testing data was set to the ratio of 70% and 30%, respectively. The selected feature for classification is then fed into various types of classifiers to observe the effect of this feature selection method on the classification performance. From this research, six features were identified as the significant features: variance, standard deviation, Min, Max, mean, and RMS. It is said that the classification accuracy of the training data and the testing data using the filter-based feature selection method is equivalent to the classification accuracy of all the features selected
Investigation of features for classification RFID reading between two RFID reader in various support vector machine kernel function
Radio Frequency Identification (RFID) is the primary technology for tripartite logistics information and automation. The RFID-based logistics system able to increase logistic operating capacity and improve the efficiency of worker to minimize the logistic operation failure. However, the precise location of the RFID device is still a problem in a specific area due to the interference of the radiofrequency. An indoor positioning using RFID technology based on various kernel function of the support vector machine (SVM), and feature extraction are proposed to determine the location of the goods. SVM classifier is utilized the acquire received signal strength indicator (RSSI) data for trained the model from the indoor moving objects as well as relationship between RSSI and distance is constructed to boost RSSI accuracy. Instead, the distance verses RSSI algorithm is used to determine the objects to be located based on the distance of the tag to be located to each reader. The feature of RSSI is extracted to nine single statistical features and three combinations of different statistical features for evaluated the classification performance in different kernel functions of the SVM classifier. The Polynomial-SVM model is capable of delivering a classification accuracy of 84.81 and 20.00% of the error rate in test data by using the function MIN extracted. The experimental results show that the algorithm improves the positioning accuracy of indoor localization with select the suitable feature combination
Estimation of electric vehicle turning radius through machine learning for roundabout cornering
This paper presents an alternative approach for estimating the turning radius using machine learning technique. While on-board sensors are unable to offer adequate information on vehicle states to the algorithm, vehicle states other than those directly detected by on-board sensors can be inferred using machine learning (ML) approaches based on the collected data. A compact electric vehicle model is used to obtain data and measurements of the vehicle states for different sets of road radius. The augmented basic measurements is fed to an Extra Tree Regression to predict the turning radius of the vehicle. The feasibility of the developed algorithm was tested and validated using performance metrics. The results show that the regression accuracy for the turning radius is 99% and can be obtained with sufficient vehicle dynamics information
Pallet-level classification using principal component analysis in ensemble learning model
In this paper, we present a machine learning pipeline to solve a multiclass classification of radio frequency identification (RFID) signal strength. The goal is to identify ten pallet levels using nine statistical features derived from RFID signals and four various ensemble learning classification models. The efficacy of the models was evaluated by considering features that were dimensionally reduced via Principal Component Analysis (PCA) and original features. It was shown that the PCA reduced features could provide a better classification accuracy of the pallet levels in comparison to the selection of all features via Extra Tree and Random Forest models
- …
