641 research outputs found
Samplers and Extractors for Unbounded Functions
Blasiok (SODA\u2718) recently introduced the notion of a subgaussian sampler, defined as an averaging sampler for approximating the mean of functions f from {0,1}^m to the real numbers such that f(U_m) has subgaussian tails, and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the best known constructions of averaging samplers for [0,1]-bounded functions in the regime of parameters where the approximation error epsilon and failure probability delta are subconstant. Our constructions are established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman, JCSS\u2796) where the error is measured by an arbitrary divergence rather than total variation distance, and a generalization of Zuckerman\u27s equivalence (Random Struct. Alg.\u2797) between extractors and samplers. We believe that the framework we develop, and specifically the notion of an extractor for the Kullback-Leibler (KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but we show that they exist with essentially the same parameters (constructively and non-constructively) as standard extractors
Cyberbullying Detection System with Multiple Server Configurations
Due to the proliferation of online networking, friendships and relationships - social communications have reached a whole new level. As a result of this scenario, there is an increasing evidence that social applications are frequently used for bullying. State-of-the-art studies in cyberbullying detection have mainly focused on the content of the conversations while largely ignoring the users involved in cyberbullying. To encounter this problem, we have designed a distributed cyberbullying detection system that will detect bullying messages and drop them before they are sent to the intended receiver. A prototype has been created using the principles of NLP, Machine Learning and Distributed Systems. Preliminary studies conducted with it, indicate a strong promise of our approach
- …