1,438 research outputs found
Akademische Gedenkfeier zu Ehren von Herrn UniversitÀtsprofessor Dr. Rolf Hachmann : 28. November 2014
Gedenkfeier fĂŒr Prof. Rolf Hachmann, 26 Jahre Ordinarius fĂŒr Vor- und FrĂŒhgeschichte und Vorderasiatische ArchĂ€ologie an der UniversitĂ€t des Saarlandes anlĂ€sslich seines Todes am 5. Juni 2014. Er gehörte zu den Ă€ltesten Professoren der UniversitĂ€t des Saarlandes
Live attenuated virus vaccine protects against SARS-CoV-2 variants of concern B.1.1.7 (Alpha) and B.1.351 (Beta).
[Figure: see text]
The unexpected resurgence of Weyl geometry in late 20-th century physics
Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was
withdrawn by its author from physical theorizing in the early 1920s. It had a
comeback in the last third of the 20th century in different contexts: scalar
tensor theories of gravity, foundations of gravity, foundations of quantum
mechanics, elementary particle physics, and cosmology. It seems that Weyl
geometry continues to offer an open research potential for the foundations of
physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep
2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
Properties of hot and dense matter from relativistic heavy ion collisions
We review the progress achieved in extracting the properties of hot and dense
matter from relativistic heavy ion collisions at the relativistic heavy ion
collider (RHIC) at Brookhaven National Laboratory and the large hadron collider
(LHC) at CERN. We focus on bulk properties of the medium, in particular the
evidence for thermalization, aspects of the equation of state, transport
properties, as well as fluctuations and correlations. We also discuss the
in-medium properties of hadrons with light and heavy quarks, and measurements
of dileptons and quarkonia. This review is dedicated to the memory of Gerald E.
Brown
Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at âs=8 TeV
The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
Time to deliver on promises: the role of ERBB2 alterations as treatment options for colorectal cancer patients in the era of precision oncology
Receptor tyrosine kinase erythroblastic oncogene B2 (ERBB2), also known as human epidermal growth factor receptor 2 (HER2), represents an oncogenic driver and has been effectively targeted in breast and gastric cancer. Recently, next-generation sequencing (NGS) discovered ERBB2 as a promising therapeutic target in metastatic colorectal cancer (mCRC), where it is altered in 3–5% of patients, but no therapies are currently approved for this use. Herein, we present the experience of a single center in diagnosing actionable genetic ERBB2 alterations using NGS and utilizing the latest therapeutic options. Between October 2019 and December 2022, a total of 107 patients with advanced CRC underwent molecular analysis, revealing actionable ERBB2 mutations in two patients and ERBB2 amplifications in two other patients. These findings correlated with immunohistochemical (IHC) staining. Of these four patients, two were treated with trastuzumab-deruxtecan (T-DXd). We present two exemplary cases of patients with actionable ERBB2 alterations to demonstrate the effectiveness of T-DXd in heavily pretreated ERBB2-positive mCRC patients and the need for early molecular profiling. To fully exploit the potential of this promising treatment, earlier molecular profiling and the initiation of targeted therapies are essential
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
Entwicklung hybrider Prozessketten aus additiver und konventioneller Fertigungstechnologie fĂŒr die Kernfusion
Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron
The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2
- âŠ