15,909 research outputs found
Machine Learning Playground
Machine learning is a science that “learns” about the data by finding unique patterns and relations in the data. There are a lot of libraries or tools available for processing machine learning datasets. You can upload your dataset in seconds and quickly start using these tools to get prediction results in a few minutes. However, generating an optimal model is a time consuming and tedious task. The tunable parameters (hyper-parameters) of any machine learning model may greatly affect the accuracy metrics. While most of the tools have models with default parameter setting to provide good results, they can often fail to provide optimal results for reallife datasets. This project will be to develop a GUI application where a user could upload a dataset and dynamically visualize accuracy results based on the selected algorithm and its hyperparameters
Representation of self-similar Gaussian processes
We develop the canonical Volterra representation for a self-similar Gaussian
process by using the Lamperti transformation of the corresponding stationary
Gaussian process, where this latter one admits a canonical integral
representation under the assumption of pure non-determinism. We apply the
representation obtained for the self-similar Gaussian process to derive an
expression for Gaussian processes that are equivalent in law to the
self-similar Gaussian process in question
BEHAVIOR BASED CONTROL AND FUZZY Q-LEARNING FOR AUTONOMOUS FIVE LEGS ROBOT NAVIGATION
This paper presents collaboration of behavior based control and fuzzy Q-learning for five legs robot navigation systems. There are many fuzzy Q-learning algorithms that have been proposed to yield individual behavior like obstacle avoidance, find target and so on. However, for complicated tasks, it is needed to combine all behaviors in one control schema using behavior based control. Based this fact, this paper proposes a control schema that incorporate fuzzy q-learning in behavior based schema to overcome complicated tasks in navigation systems of autonomous five legs robot. In the proposed schema, there are two behaviors which is learned by fuzzy q-learning. Other behaviors is constructed in design step. All behaviors are coordinated by hierarchical hybrid coordination node. Simulation results demonstrate that the robot with proposed schema is able to learn the right policy, to avoid obstacle and to find the target. However, Fuzzy q-learning failed to give right policy for the robot to avoid collision in the corner location. Keywords : behavior based control, fuzzy q-learnin
- …