566 research outputs found

    SK2 channels are required for function and long-term survival of efferent synapses on mammalian outer hair cells

    Get PDF
    Cochlear hair cells use SK2 currents to shape responses to cholinergic efferent feedback from the brain. Using SK2-/- mice, we demonstrate that, in addition to their previously defined role in modulating hair cell membrane potentials, SK2 channels are necessary for long-term survival of olivocochlear fibers and synapses. Loss of the SK2 gene also results in loss of electrically driven olivocochlear effects in vivo, and down regulation of ryanodine receptors involved in calcium-induced calcium release, the main inducer of nAChR evoked SK2 activity. Generation of double-null mice lacking both the α10 nAChR gene, loss of which results in hypertrophied olivocochlear terminals, and the SK2 gene, recapitulates the SK2-/- synaptic phenotype and gene expression, and also leads to down regulation of α9 nAChR gene expression. The data suggest a hierarchy of activity necessary to maintain early olivocochlear synapses at their targets, with SK2 serving an epistatic, upstream, role to the nAChRs.Fil: Murthy, Vidya. Tufts University; Estados UnidosFil: Maison, Stéphane F.. Massachusetts Eye and Ear Infirmary; Estados Unidos. Harvard Medical School; Estados UnidosFil: Taranda, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Tufts University; Estados UnidosFil: Haque, Nadeem. University of Notre Dame; Estados UnidosFil: Bond, Chris T.. Oregon Health Sciences University; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Adelman, John P.. Oregon Health Sciences University; Estados UnidosFil: Liberman, M. Charles. Massachusetts Eye and Ear Infirmary; Estados Unidos. Harvard Medical School; Estados UnidosFil: Vetter, Douglas E.. Tufts University; Estados Unido

    Cooperative interactions among subunits of a voltage-dependent potassium channel. Evidence from expression of concatenated cDNAs

    Get PDF
    Four copies of the coding sequence for a voltage-dependent potassium channel (RBK1, rat Kv1.1) were ligated contiguously and transcribed in vitro. The resulting RNA encodes four covalently linked subunit domains ([4]RBK1). Injection of this RNA into Xenopus oocytes resulted in the expression of voltage-dependent potassium currents. A single amino acid substitution, Tyr--\u3eVal, located within the outer mouth of the pore, introduced into the equivalent position of any of the four domains, reduced affinity for external tetraethylammonium by approximately the same amount. In constructs containing 0, 1, 2, 3, or 4 Tyr residues the free energy of binding tetraethylammonium was linearly related to the number of Tyr residues. A different amino acid substitution, Leu--\u3eIle, located in the S4 region, was made in the equivalent position of one, two, three, or four domains. The depolarization required for channel activation increased approximately linearly with the number of Ile residues, whereas models of independent gating of each domain predict marked nonlinearity. Expression of this concatenated channel provides direct evidence that voltage-dependent potassium channels have four subunits positioned symmetrically around a central permeation pathway and that these subunits interact cooperatively during channel activation

    Evidence for a Deep Pore Activation Gate in Small Conductance Ca2+-activated K+ Channels

    Get PDF
    Small conductance calcium-gated potassium (SK) channels share an overall topology with voltage-gated potassium (Kv) channels, but are distinct in that they are gated solely by calcium (Ca2+), not voltage. For Kv channels there is strong evidence for an activation gate at the intracellular end of the pore, which was not revealed by substituted cysteine accessibility of the homologous region in SK2 channels. In this study, the divalent ions cadmium (Cd2+) and barium (Ba2+), and 2-aminoethyl methanethiosulfonate (MTSEA) were used to probe three sites in the SK2 channel pore, each intracellular to (on the selectivity filter side of) the region that forms the intracellular activation gate of voltage-gated ion channels. We report that Cd2+ applied to the intracellular side of the membrane can modify a cysteine introduced to a site (V391C) just intracellular to the putative activation gate whether channels are open or closed. Similarly, MTSEA applied to the intracellular side of the membrane can access a cysteine residue (A384C) that, based on homology to potassium (K) channel crystal structures (i.e., the KcsA/MthK model), resides one amino acid intracellular to the glycine gating hinge. Cd2+ and MTSEA modify with similar rates whether the channels are open or closed. In contrast, Ba2+ applied to the intracellular side of the membrane, which is believed to block at the intracellular end of the selectivity filter, blocks open but not closed channels when applied to the cytoplasmic face of rSK2 channels. Moreover, Ba2+ is trapped in SK2 channels when applied to open channels that are subsequently closed. Ba2+ pre-block slows MTSEA modification of A384C in open but not in closed (Ba2+-trapped) channels. The findings suggest that the SK channel activation gate resides deep in the vestibule of the channel, perhaps in the selectivity filter itself

    Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus

    Get PDF
    Supraoptic nucleus (SON) neurons possess a prominent afterhyperpolarization (AHP) that contributes to spike patterning. This AHP is probably underlain by a small-conductance, CA2+-dependent, K+ type 3 (SK3) channel. To determine the distribution of SK3 channels within the SON, we used immunocytochemistry in rats and in transgenic mice with a regulatory cassette on the SK3 gene, allowing regulated expression with dietary doxycycline (DOX). In rats and wild-type mice, SK3 immunostaining revealed an intense lacy network surrounding SON neurons, with weak staining in neuronal somata and dendrites. In untreated, conditional SK3 knockout mice, SK3 was overexpressed, but the pericellular pattern in the SON was similar to that of rats. DOX-treated transgenic mice exhibited no SK3 staining in the SON. Double staining for oxytocin or vasopressin neurons revealed weak co-localization with SK3 but strong staining surrounding each neuron type. Electron microscopy showed that SK3-like immunoreactivity was intense between neuronal somata and dendrites, in apparent glial processes, but weak in neurons. This was confirmed by using confocal microscopy and double staining for glial fibrillary acidic protein (GFAP) and SK3: many GFAP-positive processes in the SON, and in the ventral dendritic/glial lamina, were shown to contain SK3-like immunoreactivity. These studies suggest a prominent role of SK3 channels in astrocytes. Given the marked plasticity in glial/neuronal relationships, as well as studies suggesting that astrocytes in the central nervous system can generate prominent CA2+ transients to various stimuli, a CA2+-dependent K+ channel may help SON astrocytes with K+ buffering whenever astrocyte intracellular CA2+ is increased. © 2005 Wiley-Liss, Inc

    Regional variation in angioplasty practice in the United States: A report from the Hirulog angioplasty study

    Get PDF
    Pla general de la font anomenada Homenatge al poble, ubicada a la plaça Molina. A la part superior de la font, a cada costat, hi ha un escut cisellat. Sota un d'aquests es troba la frase Gratitud al Ayuntamiento.Realitzada en pedra abans de 1874

    A Conformation Change in the Extracellular Domain that Accompanies Desensitization of Acid-sensing Ion Channel (ASIC) 3

    Get PDF
    Acid-sensing ion channels (ASICs) are thought to trigger some forms of acid-induced pain and taste, and to contribute to stroke-induced neural damage. After activation by low extracellular pH, different ASICs undergo desensitization on time scales from 0.1 to 10 s. Consistent with a substantial conformation change, desensitization slows dramatically when temperature drops (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. PNAS. 98:6459–6463). The nature of this conformation change is unknown, but two studies showed that desensitization rate is altered by mutations on or near the first transmembrane domain (TM1) (Coric, T., P. Zhang, N. Todorovic, and C.M. Canessa. 2003. J. Biol. Chem. 278:45240–45247; Pfister, Y., I. Gautschi, A.-N. Takeda, M. van Bemmelen, S. Kellenberger, and L. Schild. 2006. J. Biol. Chem. 281:11787–11791). Here we show evidence of a specific conformation change associated with desensitization. When mutated from glutamate to cysteine, residue 79, which is some 20 amino acids extracellular to TM1, can be altered by cysteine-modifying reagents when the channel is closed, but not when it is desensitized; thus, desensitization appears to conceal the residue from the extracellular medium. D78 and E79 are a pair of adjacent acidic amino acids that are highly conserved in ASICs yet absent from epithelial Na+ channels, their acid-insensitive relatives. Despite large effects on desensitization by mutations at positions 78 and 79—including a shift to 10-fold lower proton concentration with the E79A mutant—there are not significant effects on activation

    Transversely Driven Charge Density Waves and Striped Phases of High-Tc_c Superconductors: The Current Effect Transistor

    Full text link
    We show that a normal (single particle) current density JxJ_x {\em transverse} to the ordering wavevector 2kFz^2k_F{\bf\hat{z}} of a charge density wave (CDW) has dramatic effects both above and {\em below} the CDW depinning transition. It exponentially (in JxJ_x) enhances CDW correlations, and exponentially suppresses the longitudinal depinning field. The intermediate longitudinal I-V relation also changes, acquiring a {\em linear} regime. We propose a novel ``current effect transistor'' whose CDW channel is turned on by a transverse current. Our results also have important implications for the recently proposed ``striped phase'' of the high-Tc_c superconductors.Comment: change of title and minor corrections, 4 RevTeX pgs, to appear in Phys. Rev. Lett., 81, 3711 (1998

    A Spectacular Hα\alpha Complex in Virgo: Evidence for a Collision Between M86 and NGC 4438 and Implications for Collisional ISM Heating of Ellipticals

    Full text link
    Deep wide-field Hα\alpha+[NII] imaging around the Virgo cluster giant elliptical galaxy M86 reveals a highly complex and disturbed ISM/ICM. The most striking feature is a set of Hα\alpha filaments which clearly connect M86 with the nearby disturbed spiral NGC 4438 (23′'=120 kpc projected away), providing strong evidence for a previously unrecognized collision between them. Spectroscopy of selected regions show a fairly smooth velocity gradient between M86 and NGC 4438, consistent with the collision scenario. Such a collision would impart significant energy into the ISM of M86, probably heating the gas and acting to prevent the gas from cooling to form stars. We propose that cool gas stripped from NGC 4438 during the collision and deposited in its wake is heated by shocks, ram pressure drag, or thermal conduction, producing most of the Hα\alpha filaments. Some Hα\alpha filaments are associated with the well-known ridge of bright X-ray emission to the NW of the nucleus, suggesting that the collision is responsible for peculiarities of M86 previously ascribed to other effects. M86 is radio-quiet, thus AGN heating is unlikely to play a significant role. The M86 system has implications for understanding the role of gravitational interactions in the heating of the ISM in ellipticals, and how collisions in clusters transform galaxies.Comment: 6 pages, 2 figures. For high-resolution images, see http://www.astro.yale.edu/tal/research/index.htm
    • …
    corecore