2,767 research outputs found
Asymptotically Stationary and Static Space-times and Shear-free Null Geodesic Congruences
In classical electromagnetic theory, one formally defines the complex dipole
moment (the electric plus 'i' magnetic dipole) and then computes (and defines)
the complex center of charge by transforming to a complex frame where the
complex dipole moment vanishes. Analogously in asymptotically flat space-times
it has been shown that one can determine the complex center of mass by
transforming the complex gravitational dipole (mass dipole plus 'i' angular
momentum) (via an asymptotic tetrad trasnformation) to a frame where the
complex dipole vanishes. We apply this procedure to such space-times which are
asymptotically stationary or static, and observe that the calculations can be
performed exactly, without any use of the approximation schemes which must be
employed in general. In particular, we are able to exactly calculate complex
center of mass and charge world-lines for such space-times, and - as a special
case - when these two complex world-lines coincide, we recover the Dirac value
of the gyromagnetic ratio.Comment: 11 page
The Generalized Good Cut Equation
The properties of null geodesic congruences (NGCs) in Lorentzian manifolds
are a topic of considerable importance. More specifically NGCs with the special
property of being shear-free or asymptotically shear-free (as either infinity
or a horizon is approached) have received a great deal of recent attention for
a variety of reasons. Such congruences are most easily studied via solutions to
what has been referred to as the 'good cut equation' or the 'generalization
good cut equation'. It is the purpose of this note to study these equations and
show their relationship to each other. In particular we show how they all have
a four complex dimensional manifold (known as H-space, or in a special case as
complex Minkowski space) as a solution space.Comment: 12 page
Color Fields on the Light-Shell
We study the classical color radiation from very high energy collisions that
produce colored particles. In the extreme high energy limit, the classical
color fields are confined to a light-shell expanding at and are associated
with a non-linear -model on the 2D light-shell with specific symmetry
breaking terms. We argue that the quantum version of this picture exhibits
asymptotic freedom and may be a useful starting point for an effective
light-shell theory of the structure between the jets at a very high energy
collider.Comment: 11 pages, no figure
The Real Meaning of Complex Minkowski-Space World-Lines
In connection with the study of shear-free null geodesics in Minkowski space,
we investigate the real geometric effects in real Minkowski space that are
induced by and associated with complex world-lines in complex Minkowski space.
It was already known, in a formal manner, that complex analytic curves in
complex Minkowski space induce shear-free null geodesic congruences. Here we
look at the direct geometric connections of the complex line and the real
structures. Among other items, we show, in particular, how a complex world-line
projects into the real Minkowski space in the form of a real shear-free null
geodesic congruence.Comment: 16 page
Reverse remodeling in Dilated Cardiomyopathy: Insights and future perspectives
Dilated Cardiomyopathy (DCM) has been classically considered a progressive disease of the heart muscle that inexorably progresses towards refractory heart failure, ventricular arrhythmias and heart transplant. However, the prognosis of DCM has significantly improved in the past few years, mostly as the result of successful therapy-induced reverse remodeling. Reverse remodeling is a complex process that involves not only the left ventricle, but also many other cardiac structures and it is now recognized both as a measure of therapeutic effectiveness and as an important prognostic tool. Nevertheless, several aspects of reverse remodeling remain unclear, including the best timing for its quantification, its predictors and its interaction with individual genetic backgrounds. In this review, we summarize our current understanding of reverse remodeling in patients with DCM and provide practical recommendations for the clinical management of this challenging patient population
Spin and Center of Mass in Axially Symmetric Einstein-Maxwell Spacetimes
We give a definition and derive the equations of motion for the center of
mass and angular momentum of an axially symmetric, isolated system that emits
gravitational and electromagnetic radiation. A central feature of this
formulation is the use of Newman-Unti cuts at null infinity that are generated
by worldlines of the spacetime. We analyze some consequences of the results and
comment on the generalization of this work to general asymptotically flat
spacetimes.Comment: 20 page
Safety and activity of trastuzumab-containing therapies for the treatment of metastatic breast cancer: our long-term clinical experience (GOIM study).
Background: Trastuzumab is widely used as the treatment of choice for HER2-positive metastatic breast cancer
(MBC).
Patients and methods: Seventy patients, median age 57 years and range 31–81 years, were included in our
retrospective analysis with the aim to evaluate safety and activity of trastuzumab-containing therapies.
Results: We observed for first-line treatment response rate (RR) 41%, stable disease (SD) 47% and time to
progression (TTP) 8 months (range 1–44). Corresponding numbers for second line were RR 23%, SD 62% and (TTP) 9
months (range 3–23) and beyond second line RR 22%, SD 78% and (TTP) 9 months (range 4–19). Overall survival was
19.2 months (3–62 months). The median cumulative dose of trastuzumab administrated was 5286 mg
(464–17 940 mg). Trastuzumab was well tolerated. Median left ventricular ejection function (LVEF) at baseline was
62% and at the end of treatment was 59%. The more relevant adverse events consisted of an asymptomatic
decrease in LVEF to 40% (baseline 60%) and a grade 3 symptomatic increase in bilirubin.
Conclusion: Trastuzumab-containing therapies in MBC show a good safety and toxicity profile and a remarkable
activity even in heavily pretreated women. Patients should benefit from continued trastuzumab therapy, as shown
by the maintenance of (TTP) even beyond second-line treatment
Decoding the Tumour Microenvironment: Molecular Players, Pathways, and Therapeutic Targets in Cancer Treatment
The tumour microenvironment (TME) is a complex and constantly evolving collection of cells and extracellular components. Cancer cells and the surrounding environment influence each other through different types of processes. Characteristics of the TME include abnormal vasculature, altered extracellular matrix, cancer-associated fibroblast and macrophages, immune cells, and secreted factors. Within these components, several molecules and pathways are altered and take part in the support of the tumour. Epigenetic regulation, kinases, phosphatases, metabolic regulators, and hormones are some of the players that influence and contribute to shaping the tumour and the TME. All these characteristics contribute significantly to cancer progression, metastasis, and immune escape, and may be the target for new approaches for cancer treatment
- …