67,897 research outputs found
Degenerate elliptic operators: capacity, flux and separation
Let be the semigroup generated on L_2(\Ri^d) by a
self-adjoint, second-order, divergence-form, elliptic operator with
Lipschitz continuous coefficients. Further let be an open subset of
\Ri^d with Lipschitz continuous boundary . We prove that
leaves invariant if, and only if, the capacity of the boundary
with respect to is zero or if, and only if, the energy flux across the
boundary is zero. The global result is based on an analogous local result.Comment: 18 page
Degenerate elliptic operators in one dimension
Let be the symmetric second-order differential operator on L_2(\Ri)
with domain C_c^\infty(\Ri) and action where c\in
W^{1,2}_{\rm loc}(\Ri) is a real function which is strictly positive on
\Ri\backslash\{0\} but with . We give a complete characterization of
the self-adjoint extensions and the submarkovian extensions of . In
particular if where then has a unique self-adjoint extension if and only if and a unique submarkovian extension if and only if . In both cases the corresponding semigroup leaves
and invariant.
In addition we prove that for a general non-negative c\in W^{1,\infty}_{\rm
loc}(\Ri) the corresponding operator has a unique submarkovian extension.Comment: 28 page
A rectangular additive convolution for polynomials
We define the rectangular additive convolution of polynomials with
nonnegative real roots as a generalization of the asymmetric additive
convolution introduced by Marcus, Spielman and Srivastava. We then prove a
sliding bound on the largest root of this convolution. The main tool used in
the analysis is a differential operator derived from the "rectangular Cauchy
transform" introduced by Benaych-Georges. The proof is inductive, with the base
case requiring a new nonasymptotic bound on the Cauchy transform of Gegenbauer
polynomials which may be of independent interest
Crystallization of random matrix orbits
Three operations on eigenvalues of real/complex/quaternion (corresponding to
) matrices, obtained from cutting out principal corners, adding,
and multiplying matrices can be extrapolated to general values of
through associated special functions.
We show that limit for these operations leads to the finite
free projection, additive convolution, and multiplicative convolution,
respectively.
The limit is the most transparent for cutting out the corners, where the
joint distribution of the eigenvalues of principal corners of a
uniformly-random general self-adjoint matrix with fixed eigenvalues is
known as -corners process. We show that as these
eigenvalues crystallize on the irregular lattice of all the roots of
derivatives of a single polynomial. In the second order, we observe a version
of the discrete Gaussian Free Field (dGFF) put on top of this lattice, which
provides a new explanation of why the (continuous) Gaussian Free Field governs
the global asymptotics of random matrix ensembles.Comment: 25 pages. v2: misprints corrected, to appear in IMR
Hydrodynamics and perfect fluids: uniform description of soft observables in Au+Au collisions at RHIC
It is argued that the use of the initial Gaussian energy density profile for
hydrodynamics leads to much better uniform description of the RHIC heavy-ion
data than the use of the standard initial condition obtained from the Glauber
model. With the modified Gaussian initial conditions we successfully reproduce
the transverse-momentum spectra, v2, and the pionic HBT radii (including their
azimuthal dependence). The emerging consistent picture of hadron production
hints that a solution of the long standing RHIC HBT puzzle has been found.Comment: Talk presented by WF at the XXXVIII International Symposium on
Multiparticle Physic
- …