824 research outputs found

    Controllable high voltage source having fast settling time

    Get PDF
    A high voltage dc stepping power supply for sampling a utilization device such as an electrostatic analyzer has a relatively fast settling time for voltage steps. The supply includes a waveform generator for deriving a low voltage staircase waveform that feeds a relatively long response time power supply, deriving a high output voltage generally equal to a predetermined multiple of the input voltage. In the power supply, an ac voltage modulated by the staircase waveform is applied to a step-up transformer and then to a voltage multiplier stack to form a high voltage, relatively poor replica of the input waveform at an intermediate output terminal. A constant dc source, applied to the input of the power supply, biases the voltage at the intermediate output terminal to be in excess of the predetermined multiple of the input voltage

    High-voltage stepping supply with fast settling time

    Get PDF
    Waveform generator is used to derive low-voltage staircase waveform that feeds relatively long response time power supply. Power supply has high output voltage that is predetermined multiple of the input voltage

    Two-axis flux gate magnetometer

    Get PDF
    Magnetometer uses single sensing head to measure magnetic flux density along two axes simultaneously. The sensor head consists of permalloy core and four windings. Two windings perform a multivibrator function, the two remaining windings sense magnetic fields. The smaller magnetometer performs same functions as more complex devices

    Modification to shock fitting program

    Get PDF
    A modified form of the Lepping - Argentiero single spacecraft, shock normal determination procedure is presented. The modified method incorporates a simple predictor-corrector algorithm which allows a faster convergence rate and the use of average values of the parameters for the starting vector

    The complex magnetic field of Jupiter

    Get PDF
    An analysis of the characteristics of the magnetic field of the planet Jupiter is presented. The data were obtained during the flight of Pioneer 11 space probe, using a high field triaxial fluxgate magnetometer. The data are analyzed in terms of traditional Schmitt normalized spherical harmonic expansion fitted to the observations in a least squares sense. Tables of data and graphs are provided to summarize the findings

    Summary of initial results from the GSFC fluxgate magnetometer on Pioneer 11

    Get PDF
    The main magnetic field of Jupiter was measured by the Fluxgate Magnetometer on Pioneer 11 and analysis reveals it to be relatively more complex than expected. In a centered spherical harmonic representation with a maximum order of n = 3 (designated GSFC model 04), the dipole term (with opposite polarity to the Earth's) has a moment of 4.28 Gauss x (Jupiter radius cubed), tilted by 9.6 deg towards a system 111 longitude of 232. The quadrupole and octupole moments are significant, 24% and 21% of the dipole moment respectively, and this leads to deviations of the planetary magnetic field from a simple offset tilted dipole for distances smaller than three Jupiter radii. The GSFC model shows a north polar field strength of 14 Gauss and a south polar field strength of 10.4 Gauss. Enhanced absorption effects in the radiation belts may be predicted as a result of field distortion

    Jovimagnetic secular variation

    Get PDF
    Long term variations of a planetary magnetic field are one of the few observables available in the study of planetary interiors and dynamo theory. While variations of the geomagnetic field were accessible to direct measurement for centuries, knowledge of the secular variations of other planetary dynamos is limited. New limits on Jovimagnetic secular variations were found by comparison of a Jovian internal field model obtained from the Voyager 1 magnetic field observations at epoch 1979.2 with the epoch 1974.9 Pioneer 11 O4 model. No significant secular variation of either the magnitude or position of the Jovidipole is found for the years 1974.9 through 1979.2, although a small Earth-like variation cannot be ruled out

    Spectral analysis of magnetohydrodynamic fluctuations near interplanetary schocks

    Get PDF
    Evidence for two types of relatively large amplitude MHD waves upstream and downstream of quasi-parallel forward and reverse interplanetary shocks is presented. The first mode is an Alfven wave with frequencies (in the spacecraft frame) in the range of 0.025 to 0.07 Hz. This is a left-hand polarized mode and propagates within a few degrees of the ambient magnetic field. The second is a fast MHD mode with frequencies in the range of 0.025 to 0.17 Hz, right-hand polarization and propagating along the magnetic field. These waves are detected principally in association with quasi-parallel shock. The Alfven waves are found to have plasma rest frame frequencies in the range of 1.1 to 6.3 mHz with wavelengths in the order of 4.8 x 10 to the 8th power to 2.7 x 10 to the 9th power cm. Similarly, the fast MHD modes have rest frame frequencies in the range 1.6 to 26 mHz with typical wavelengths about 2.19 x 10 to the 8th power cm. The magnetic field power spectrum in the vicinity of these interplanetary shocks is much steeper than f to the -s/3 at high frequencies. The observed spectra have a high frequency dependence of f to the -2/5 to f to the -4

    Standing Alfven wave current system at Io: Voyager 1 observations

    Get PDF
    The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io is explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the magnetic field experiment on Voyager 1 on 5 March 1979 when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 million amps. A mass density of 7400 to 13600 proton mass units per Cu cm is derived which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050 to 1500 per cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io

    A study of the solar wind angular momentum including proton thermal anisotropy

    Get PDF
    The solution to the steady state magnetohydrodynamic equations governing the supersonic expansion of the solar corona into interplanetary space is obtained for various assumptions regarding the form in which proton thermal energy is carried away from the sun. The one-fluid, inviscid, formulation of the MHD equations is considered assuming that thermal energy is carried away by conduction from a heat source located at the base of the corona. Angular motion of the solar wind led to the existence of three critical points through which the numerical solutions must pass to extend from the sun's surface to large heliocentric distances. The results show that the amount of magnetic field energy converted into kinetic energy in the solar wind is only a small fraction of the total expansion energy flux and has little effect upon the final radial expansion velocity
    corecore