42 research outputs found

    A 2.5 GHz Wireless ECG System for Remotely Monitoring Heart Pulses

    Get PDF
    A wireless electrocardiograph technology (WECG)\ud which works on 2.5 GHz frequency band has been designed,\ud implemented and evaluated in the actual environments both\ud indoor and outdoor. WECG system has the benefit for improving\ud the quality of the health care services especially for monitoring\ud and evaluating people heart pulses record during the treatments.\ud These are also practically useful to apply on a number medical\ud cases, for instance, the heart disease treatment, early medical\ud treatment at the disaster areas (e.g. earthquake, tsunami, the\ud traffic accident on the road), other remote medical monitoring in\ud health care centers, or intensive care units at the hospital. The\ud WECG technology allows the medical authorities such as doctor\ud and nurses capable to monitor the patients flexibly and\ud immediately from a remote location. The read range testing of\ud wireless ECG system to perform on monitoring the heart pulses\ud was carried out. At indoor environments it can read up to the\ud distance of more than 50 m. When operating at LOS outdoor\ud environment the master unit and local ECG sensor unit can\ud communicate for the distance longer than 250 m

    Statistic Approach versus Artificial Intelligence for Rainfall Prediction Based on Data Series

    Get PDF
    This paper proposed a new idea in comparing two common predictors i.e. the statistic method and\ud artificial intelligence (AI) for rainfall prediction using empirical data series. The statistic method uses Auto-\ud Regressive Integrated Moving (ARIMA) and Adaptive Splines Threshold Autoregressive (ASTAR), most favorable\ud statistic tools, while in the AI, combination of Genetic Algorithm-Neural Network (GA-NN) is chosen. The results\ud show that ASTAR gives best prediction compare to others, in term of root mean square (RMSE) and following trend\ud between prediction and actual

    Application of Microcontroller ATmega8535 for Hybrid Photovoltaic ??? Thermal (PV/T)

    Get PDF
    Abstract???It is well-known that the electrical efficiency conversion of photovoltaic systems is low due to\ud non-linear semiconductor mechanism inside the solar cell materials. The increasing in output efficiency\ud will be always very challenging to photovoltaic technology. One of the methods is to utilize the thermal\ud energy arises in the back side of module, which may be called hybrid photovoltaic-thermal (PV/T). The\ud advantage of this system is the output of electricity and thermal energy can be obtained simultaneously. In\ud addition, the electrical efficiency can be indirectly improved since the thermal system acts as cooling\ud system. In this research, thermal energy extraction mechanism is based on the performance of\ud microcontroller ATmega8535 including thermal sensors. The idea is the microcontroller will operate pump\ud to flow the media fluid through designed spiral pipe once the threshold temperature inside the heat box\ud extraction is reached, therefore high temperature fluid can be observed in the outlet pipe. Several testing\ud on three different fluids, air, water and thermal oil under clear sky, cloudy sky and rainy conditions are\ud conducted in order to confirm the proper working condition of control system

    A New Approach of Expert System for Rainfall Prediction Based on Data Series

    Get PDF
    This paper proposed a new approach for rainfall prediction method, which combines the Support Vector Machine (SVM) and Fuzzy Logic methods.The performance of the proposed method is compared to the Neural Network (NN)???Fuzzy.The climatological data is obtained from PT LAPAN Bandung and the Meteorology, Climatology and Geophysics Region IV Makassar Indonesiafor 10 years (2001-2010) and is analysed by MATLAB 7.6.The results confirm that the SVM-Fuzzy achieves higher accuracy than NN-Fuzzy

    Numerical Statistic Approach for Expert System in Rainfall Prediction Based On Data Series

    Get PDF
    The potential of statistical approach in predicting rain fall is discussed in this paper. Two most implemented methods i.e. Auto-Regressive Integrated Moving Average (ARIMA) and Adaptive Splines Threshold Autoregressive (ASTAR) are compared in term of accuracy in prediction. Both methods are constructed to predict daily rainfall in the area of Makassar, Indonesia. Rain problem in Indonesia increasingly complex due to climate shifts that result in high intensity rainfall in the dry season so it is very influential on the development of many aspect of social-economy sector. A ten years daily data (2001-2010) obtained from BMKG (the Meteorology, Climatology and Geophysics). Several complementary data is also obtained from LAPAN (Government Space Agent). From various meteorological variables, four variables are selected for predicting rainfall- There are temperature, humidity, wind speed, and previous precipitation based on their high correlation to rain event.. These four variables are then input to the ARIMA and ASTAR. The accuracy of prediction is measured based on root mean square error (RMSE). ASTAR outperformed ARIMA with less RMSE which is 0.02 to 0.24

    DETEKSI KARIES GIGI MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN METODE BACKPROPAGATION

    Get PDF
    Karies merupakan suatu penyakit pada jaringan keras gigi, yaitu email, dentin dan sementum yang disebabkan aktivitas jasad renik yang ada dalam suatu karbohidrat yang diragikan. Salah satu cara untuk menegakkan diagnosa pada karies gigi menggunakan dental radiographs atau rontgen gigi. Dasar diagnostik rontgen memberikan perbedaan densitas dari berbagai jaringan tubuh yang memberikan berbagai derajat kehitaman pada film . Tujuan dari penelitian ini adalah untuk menganalisa proses pembuatan sistem yang dapat mendeteksi karies berdasarkan stadium karies ( karies media dan karies profunda) pada gigi menggunakan jaringan syaraf tiruan dengan metode back propagation serta dapat mengetahui tingkat keakuratan menggunakan jaringan syaraf tiruan dengan metode back propagation dalam mendeteksi karies pada gigi stadium karies ( karies media dan karies profunda). Data input diambil dari arsip foto rontgen dari Ladokgi TNI AL Makassar sejumlah 360 untuk citra latih yang terbagi atas citra gigi terkena karies media,citra gigi terkena karies profunda serta citra gigi normal dan 180 untuk citra uji. Citra akan diolah melalui proses akusisi citra, grayscale, thresholding, deteksi tepi dan ekstraksi ciri untuk menghasilkan input bagi jaringan syaraf tiruan Back Propagation. Hasil penelitian memberikan keakuratan dalam pengujian mendeteksi karies gigi dengan jaringan syaraf tiruan dengan metode Back Propagation terhadap citra uji sebesar 83.89

    Sistem Kendali Ayunan Bayi Berbasis Mikrokontroller dan Android

    Get PDF
    This study aims to design a prototype of a microcontroller and arduino-based baby swing control system that will be very useful for housewives who have babies. This system will automatically work to move the swing when the sound of a baby and water is detected. This system is designed using a sound sensor that functions to detect the baby's voice, a water sensor to detect water when a baby is urinating, a DC motor that functions to move the swing automatically and a mobile application that functions to monitor swings. The test results show that the tool functions as desired, where when the tool detects the sound of a baby's cry, the tool automatically moves the swing, when the tool detects the presence of water, the swing will send a notification to the smartphone, this tool also successfully displays information to the smartphone in the form of a state baby in the form of video and sensor conditions on the swing. The communication distance between the smartphone and the device is 20 meters.Penelitian ini bertujuan untuk merancang sebuah prototipe sistem kendali ayunan bayi berbasis mikrokontroller dan arduino yang akan sangat berguna bagi ibu rumah tangga yang memiliki bayi. Sistem ini akan otomatis bekerja untuk menggerakkan ayunan apabila terdeteksi suara bayi dan air. Sistem ini dirancang menggunakan sensor suara yang berfungsi untuk mendeteksi suara bayi, sensor air untuk mendeteksi air ketika bayi sedang buang air kecil, motor DC yang berfungsi untuk menggerakkan ayunan secara otomatis serta aplikasi mobile yang berfungsi untuk memonitoring ayunan. Hasil pengujian menunjukkan bahwa alat berfungsi sesuai dengan yang diinginkan, dimana ketika alat mendeteksi adanya suara tangisan bayi, maka alat secara otomatis menggerakkan ayunan, ketika alat mendeteksi adanya air maka ayunan akan mengirimkan notifikasi ke smartphone, alat ini juga berhasil menampilkan informasi ke smartphone berupa keadaan bayi dalam bentuk video dan kondisi sensor pada ayunan. Untuk jarak komunikasi antara smartphone dan alat yaitu sejauh 20 meter

    Implementasi Algoritma Term Frequency ??? Inverse Document Frequency dan Vector Space Model untuk Klasifikasi Dokumen Naskah Dinas

    Get PDF
    Pada kenyataannya dokumen naskah dinas diinstansi masih disimpan dan dicari secara manual. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem klasifikasi dokumen naskah dinas secara otomatis dengan banyak kategori sehingga dapat mempermudah dalam penyimpanan dan pencarian dokumen naskah dinas. \ud Penelitian ini menerapkan metode text mining dengan supervised learning menggunakan algoritma term frequency ??? inverse document frequency (TF-IDF) dan vector space model. Metode text mining digunakan untuk menentukan kata kunci dokumen secara otomatis. Algoritma TF-IDF melakukan pemberian bobot pada setiap kata kunci disetiap kategori dan vector space model untuk mencari kemiripan kata kunci dengan kategori yang tersedia. Implementasi dari sistem ini menghasilkan vektor pada setiap kategori sebagai data pembelajaran. sehingga nilai vektor tersebut akan dibandingkan dengan nilai dari kata kunci dokumen yang diuji untuk mencari kemiripan / similiarity. \ud Hasil penelitian menunjukkan bahwa algoritma TF-IDF dan Vector Space Model dapat mengklasifikasikan dokumen naskah dinas dengan banyak kategori dengan akurasi hasil klasifikasi 70%-75%

    Hybrid Deep Learning Approach For Stress Detection Model Through Speech Signal

    Get PDF
    Stress is a psychological condition that requires proper treatment due to its potential long-term effects on health and cognitive faculties. This is particularly pertinent when considering pre- and early-school-age children, where stress can yield a range of adverse effects. Furthermore, detection in children requires a particular approach different from adults because of their physical and cognitive limitations. Traditional approaches, such as psychological assessments or the measurement of biosignal parameters prove ineffective in this context. Speech is also one of the approaches used to detect stress without causing discomfort to the subject and does not require prerequisites for a certain level of cognitive ability. Therefore, this study introduced a hybrid deep learning approach using supervised and unsupervised learning in a stress detection model. The model predicted the stress state of the subject and provided positional data point analysis in the form of a cluster map to obtain information on the degree using CNN and GSOM algorithms. The results showed an average accuracy and F1 score of 94.7% and 95%, using the children's voice dataset. To compare with the state-of-the-art, model were tested with the open-source DAIC Woz dataset and obtained average accuracy and F1 scores of 89% and 88%. The cluster map generated by GSOM further underscored the discerning capability in identifying stress and quantifying the degree experienced by the subjects, based on their speech pattern

    Penerapan Metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) Dalam Pemilihan Tempat Pendirian Pabrik Kelapa Sawit

    Full text link
    Penelitian ini bertujuan merancang suatu sistem pendukung keputusan sehingga dapat dijadikan sebagai solusi dalam penentuan lokasi tempat pendirian pabrik kelapa sawit dengan menerapkan model Fuzzy Multiple Atribut Decision Making (MADM) dengan metode Technique For Order Preference by Similarity to Ideal Solution (TOPSIS). Data penelitian diperoleh melalui penelitian pustaka, penelitian lapangan dan wawancara. Hasil penelitian ini menunjukkan bahwa penerapan fuzzy MADM metode TOPSIS untuk pemilihan lokasi pendirian pabrik kelapa sawit dilakukan dengan pengujian white-box dan hasilnya dinyatakan valid sehingga sistem dianggap layak untuk melakukan analisis kelayakan pemilihan lokasi pendirian pabrik kelapa sawit. Sedangkan lokasi pendirian pabrik kelapa sawit yang menjadi pilihan utama/prioritas berdasarkan hasil analisis sistem menggunakan metode TOPSIS adalah Maiwa dengan nilai preferensi total terbesar 0,8336 (Disetujui) sedangkan Cendana dengan nilai preferensi 0,5994 dan Enrekang dengan nilai preferensi 0,5745 menjadi alternatif yang dapat dipertimbangkan
    corecore