16 research outputs found

    Vinylene-Linked Covalent Organic Frameworks by Base-Catalyzed Aldol Condensation

    Get PDF
    Two 2D covalent organic frameworks (COFs) linked by vinylene (−CH=CH−) groups (V‐COF‐1 and V‐COF‐2) are synthesized by exploiting the electron deficient nature of the aromatic s‐triazine unit of C3‐symmetric 2,4,6‐trimethyl‐s‐triazine (TMT). The acidic terminal methyl hydrogens of TMT can easily be abstracted by a base, resulting in a stabilized carbanion, which further undergoes aldol condensation with multitopic aryl aldehydes to be reticulated into extended crystalline frameworks (V‐COFs). Both V‐COF‐1 (with terepthalaldehyde (TA)) and V‐COF‐2 (with 1,3,5‐tris(p‐formylphenyl)benzene (TFPB)) are polycrystalline and exhibit permanent porosity and BET surface areas of 1341 m2 g−1 and 627 m2 g−1, respectively. Owing to the close proximity (3.52 Å) of the pre‐organized vinylene linkages within adjacent 2D layers stacked in eclipsed fashion, [2+2] photo‐cycloadditon in V‐COF‐1 formed covalent crosslinks between the COF layers.TU Berlin, Open-Access-Mittel - 2019DFG, 390540038, EXC 2008: UniSysCa

    XPS studies on dispersed and immobilised carbon nitrides used for dye degradation

    Get PDF
    Liquid phase adsorption is a common technique in waste water purification. However, this process has some downsides. The removal of environmentally harmful contaminants from organic liquids by adsorption produces secondary waste which has to be treated afterwards. The treatment can be e.g. high temperatures or a landfill. Photocatalysts such as CN6 can remove the dye under light irradiation but most times they have to be separated afterwards. Immobilisation of these photocatalysts can be one way to address this problem. The resulting photocatalyst layers were analysed in operando by near-ambient pressure XPS. This enabled us to detect the active species, i.e. oxygen radicals, at the surface, responsible for the dye degradation.TU Berlin, Open-Access-Mittel - 201

    A molecular approach to the synthesis of platinum-decorated mesoporous graphitic carbon nitride as selective CO2reduction photocatalyst

    Get PDF
    Altres ajuts: I. A.-P. acknowledges the Universitat Autònoma de Barcelona for his pre-doctoral grant. J.G.-A. acknowledges Serra Húnter Program. The authors thank the Microscopy Service of the Universitat Autònoma de Barcelona for technical assistance with TEM and SEMPlatinum nanoparticles (Pt-NPs) have been directly synthesized through the organometallic approach onto the surface of mesoporous graphitic carbon nitride (mpg-CN) semiconductor with two different metal loadings. Thorough multi-technique characterization reveals a very good dispersion of nanoparticles with a narrow size distribution centered at ca. 2.5 nm, regardless of the metal loading, and composed primarily of platinum metal with a minor contribution of oxidic surface species. Compared to bare mpg-CN, the Pt-NPs decorated materials show improved charge separation properties upon band gap excitation, ascribed to electron extraction by Pt-NPs from the conduction band of mpg-CN, as demonstrated by time-resolved fluorescence measurements. The so-obtained materials show photocatalytic activity for CO2 reduction under both UV and visible light irradiation, with improved selectivity towards highly reduced products such as methanol and methane with respect to the bare semiconductor, which leads to the formation of carbon monoxide as the main product. The obtained results shed light on the pathways that determine selectivity in photocatalytic CO2 conversion, contributing to the development of selective photocatalysts, which is one of the cornerstones in this promising technology for direct solar-to-chemical energy conversio

    Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride

    Get PDF
    Development of competent and cost-effective materials for hydrogen evolution reaction (HER) has been attracting great attention since hydrogen is hailed as a promising environmentally friendly energy source to reduce the greenhouse emissions. Herein, Ru(0) nanoparticles (RuNPs) have been stabilized onto the surface of four different conducting carbon nanomaterials (CNMs) from 0D to 3D, such as 0D carbon nanohorns (CNH), 1D single-walled carbon nanotubes (CNTs), 2D reduced graphene oxide (rGO) and 3D graphite (GP), for their use in the photocatalytic HER. For this aim, the resulting RuNP@CNMs where physically mixed with mesoporous graphitic carbon nitride (mpg-CN) in an optimum composition ratio to maximize the photocatalytic HER activity. Notably, the resulting four hybrid RuNPs@CNM/mpg-CN materials showed an outstanding increase in the hydrogen evolution reaction (HER) when compared with the pristine mesoporous graphitic carbon nitride without co-catalyst. A comparison on the photocatalytic activity of the four hybrid RuNPs@CNMs physically mixed with mpg-CN and a deep study on the fate of the nanohybrids after catalysis are presente

    Constitutional isomerism of the linkages in donor–acceptor covalent organic frameworks and its impact on photocatalysis

    Get PDF
    結合様式の制御により高効率な水素発生反応を実現 --有機二次元高分子光触媒の創出に新たな戦略を--. 京都大学プレスリリース. 2022-12-13.When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs

    Photocatalytic CO2 reduction by mesoporous polymeric carbon nitride photocatalysts

    No full text
    In this paper, a sol-gel derived mesoporous polymeric carbon nitride has been investigated as a photocatalyst for CO2 photocatalytic reduction. Noble-metal Pt nanoparticles were deposited on carbon nitride (sg-CN) in order to investigate the performance of both Pt-sg-CN and sg-CN for photocatalytic CO2 reduction. Physicochemical properties of prepared nanocomposites were comprehensively characterized by using powder XRD, N-2 physisorption, UV-Vis DRS, ICP-AES, FTIR, solid-state NMR, SEM, TEM and photoelectrochemical measurements. Compared with pure sg-CN, the resulting Pt-loaded sg-CN (Pt-sg-CN) exhibited significant improvement on the CO2 photocatalytic reduction to CH4 in the presence of water vapor at ambient condition under UV irradiation. 1.5 wt.% Pt-loaded sg-CN (Pt-sg-CN) photocatalyst formed the highest methane yield of 13.9 mu mol/g(cat). after 18 h of light irradiation, which was almost 2 times and 32 times improvement in comparison to pure sg-CN and commercial TiO2 Evonik P25, respectively. The substantial photocatalytic activity of Pt-sg-CN photocatalyst for the yield product of the CO2 photocatalytic reduction was attributed to the efficient interfacial transfer of photogenerated electrons from sg-CN to Pt due to the lower Fermi level of Pt in the Pt-sg-CN hybrid heterojunctions as also evidenced by photoelectrochemical measurements. This resulted in the reduction of electron-hole pairs recombination for effective spatial charge separation, consequently increasing the photocatalytic efficiency.Web of Science1885644563

    Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization

    Get PDF
    Covalent organic frameworks (COFs) are promising materials for applications in photocatalysis, due to their conjugated, porous and chemically stable architectures. Alternating electron donor–acceptor-type structures are known to enhance charge carrier transport mobility and stability in polymers and are therefore also interesting building units for COFs used as photocatalysts but also as photoinitiator. In this work, two donor–acceptor COFs using electron deficient 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline and electron rich thiophene-based thieno[3,2-b]thiophene-2,5-dicarbaldehyde or [2,2′-bithiophene]-5,5′-dicarbaldehyde linkers are presented. The resulting crystalline and porous COFs have been applied as photoinitiator for visible light induced free radical polymerization of methyl methacrylate (MMA) to poly-methyl methacrylate (PMMA). These results pave the way to the development of robust and heterogeneous systems for photochemistry that offers the transfer of radicals induced by visible light.DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat

    Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production

    No full text
    MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 μmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst

    Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts via Donor-Acceptor Interactions

    No full text
    Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical bandgap of ~2.3 eV, we synthesised a library of eight sulphur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical bandgaps ranging from 2.07 to 2.60 eV using Stille coupling. These polymers combine π-conjugated electron-withdrawing triazine- (C3N3) and electron donating, sulphur-containing moieties as covalently-bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects. Moreover, obtained polymers effectively evolve H2 gas from water under visible light irradiation with hydrogen evolution rates up to 3158 µmol h-1 g-1 and high apparent quantum efficiency which is the highest value obtained for microporous organic polymers to-date. The design principles demonstrated here are transferable to a new field of high-performance polymer photocatalysts based on efficient donor-acceptor dyads
    corecore