6 research outputs found
Evaluation of total phenolic content, total antioxidant activity, and antioxidant vitamin composition of pomegranate seed and juice
This study aimed to determine total phenolic content (TPC), total antioxidant activity (TAA), antioxidant vitamin composition (A, C, and E) of pomegranate fruit. In addition, two edible parts of pomegranate juice, pomegranate seed, and combination of them were compared based on antioxidant properties. TPC was determined by using Folin-Ciocalteu (FC) method based on colorimetric reduction. Ferric reduction ability power (FRAP assay) was used to test the antioxidant activity. Vitamin assessments were conducted by using high performance liquid chromatography (HPLC). Results for antioxidant vitamin composition in pomegranate juice (PJ) showed that the concentration of vitamin A was 22.8 ± 0.69 μg/100 g, vitamin C was 57.8 ± 0.59 mg/100 g, and vitamin E was 0.07 ± 0.01 mg/100 g. Besides, TPC in PJ, pomegranate seed (PS), and pomegranate seed-juice (PSJ) was 2502 ± 54, 165 ± 49, and 2696 ± 49 mg GAE/L, and TAA was 32 ± 5.1, 20 ± 2.8, and 47 ± 5.5 mmol/L respectively. This study revealed that PSJ contained high level of phenolic compounds, antioxidant activity, and vitamin C. In addition, TPC was as main contributor to antioxidant activities, and positively correlated with TAA (r2 = 0.91, p < 0.05). Therefore, combination of pomegranate seed and juice may become an alternative and potential source of natural antioxidant
Recommended from our members
IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds.
Persistent inflammation is a major contributor to healing impairment in diabetic chronic wounds. Paradoxically, diabetic wound environment during the acute phase of healing is completely different because it exhibits a reduced macrophage response owing to inadequate expression of CCL2 proinflammatory cytokine. What causes a reduction in CCL2 expression in diabetic wounds early after injury remains unknown. In this study, we report that in contrast to prolonged exposure to high glucose, which makes monocytes proinflammatory, short-term exposure to high glucose causes a rapid monocyte reprogramming, manifested by increased expression and secretion of IL-10, which in an autocrine/paracrine fashion reduces glucose uptake and transforms monocytes into an anti-inflammatory phenotype by dampening signaling through toll-like receptors. We show that IL-10 expression is significantly increased in diabetic wounds during the acute phase of healing, causing significant reductions in toll-like receptor signaling and proinflammatory cytokine production, delaying macrophage and leukocyte responses, and underlying healing impairment in diabetic wounds. Importantly, blocking IL-10 signaling during the acute phase of healing improves toll-like receptor signaling, increases proinflammatory cytokine production, enhances macrophage and leukocyte responses, and stimulates healing in diabetic wounds. We posit that anti-IL-10 strategies have therapeutic potential if added topically after surgical debridement, which resets chronic wounds into acute fresh wounds
Therapeutic evaluation of immunomodulators in reducing surgical wound infection.
Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics
Recommended from our members
PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation
BackgroundAtrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility.MethodsRight atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies.ResultsIn human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5).ConclusionsPatients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF
Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats
Oxidative stress attributes a crucial role in chronic complication of diabetes. The aim of this study was to determine the most effective part of pomegranate on oxidative stress markers and antioxidant enzyme activities against streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Male Sprague-Dawley rats were randomly divided into six groups. Experimental diabetes was induced by a single intraperitoneal injection (i.p), 15 min after the i.p administration of NA. Diabetic rats showed significant increase in plasma glucose level, and the significant decrease in plasma insulin level. The activities of antioxidant enzymes such as total antioxidant status (TAS), superoxide dismutase (SOD), and catalase (CAT) reduced while the levels of biomarkers of oxidative stress such as gamma-glutamyle transferase (GGT), and malondialdehyde (MDA) increased in diabetic control rats as compared to normal control rats. Oral treatment with pomegranate seed-juice for 21 days demonstrated significant protective effects on all the biochemical parameters studied. Besides, biochemical findings were supported by histopathological study. These results revealed that pomegranate has potential protective effect against oxidative stress induced diabetic rats