52 research outputs found

    Mathematical analysis of the turbine coefficient of performance for tidal stream turbines

    Get PDF
    Unregulated water currents such as tides and ocean currents include energy that could be utilized for electricity production. These currents can be seen as dead bodies of water with potential energy, driven by gravity or alive moving with a kinetic energy (KE). Tidal stream turbines are a relatively new technology for extracting KE from tidal currents, which is currently in progress from development stage to industrial execution. One of the most important factors in tidal power analysis is the rotor efficiency coefficient or turbine coefficient of performance (λ). It depends on the rotor blade geometry and water velocity. This article presents a mathematical description of good interpolating functions which describe this coefficient analytically, for tidal stream turbines. Nonlinear curve-fitting solver in least-squares sense has been used in this study. Various interpolation functions have been proposed. The proposed mathematical descriptions can be very helpful for tidal power analysis and output power estimation

    An algorithm for optimal sizing of the capacitor banks under non-sinusoidal and unbalanced conditions

    Get PDF
    In non-sinusoidal and unbalanced systems, optimal sizing of the capacitor banks is not a straightforward task as in sinusoidal and balanced systems. In this paper, by means of qualitative and quantitative analysis, it is interpreted that the classical capacitor selection algorithm widely implemented in Reactive Power Control (RPC) relays does not achieve optimal power factor improvement in non-sinusoidal and unbalanced systems. Accordingly, a computationally efficient algorithm is proposed to find the optimal capacitor bank for smart RPC relays. It is further shown in a simulated test case by using Matlab software that the proposed algorithm provides better power factor improvement when compared with the classical algorithm. It is also figured out from the simulation results that both algorithms cause almost the same harmonic distortion and unbalance deterioration levels in the system

    A filter design approach to maximize ampacity of cables in nonsinusoidal power systems

    Get PDF
    This paper presents an optimal design of the C-type passive filters for the effective utilization of the power cables under nonsinusoidal conditions based on maximization of the harmonic derating factor (HDF) of a power cable, where maintaining the load true power factor at an acceptable range is desired. According to IEEE Standard 519, the total harmonic distortions of the voltage and current measured at the point of common coupling are taken into account as main constraints of the proposed approach. The presented numerical results show that the proposed approach provides higher current carrying capacity, or ampacity of the cables under nonsinusoidal conditions when compared to the traditional approaches based on minimization of the current total harmonic distortion and maximization of the true load power factor. A numerical case study is presented to demonstrate the proposed approach

    Optimal design of single-tuned passive filters using response surface methodology

    Get PDF
    This paper presents an approach based on Response Surface Methodology (RSM) to find the optimal parameters of the single-tuned passive filters for harmonic mitigation. The main advantages of RSM can be underlined as easy implementation and effective computation. Using RSM, the single-tuned harmonic filter is designed to minimize voltage total harmonic distortion (THDV) and current total harmonic distortion (THDI). Power factor (PF) is also incorporated in the design procedure as a constraint. To show the validity of the proposed approach, RSM and Classical Direct Search (Grid Search) methods are evaluated for a typical industrial power system

    Performance of grid-connected solar photovoltaic systems with single-tuned and double-tuned harmonic passive filters

    Get PDF
    The generated solar photovoltaic power can be stand-alone or grid-connected. In both systems, power quality issues arise and can affect the network. The harmonic distortions can affect the system significantly if they are not mitigated. This paper presents the performance of grid-connected solar photovoltaic systems with single-tuned and double-tuned filters for harmonics mitigation. The design aspects of each filter are presented and discussed. The simulation results are analyzed and validated using ETAP software

    Optimal resonance-free third-order high-pass filters based on minimization of the total cost of the filters using Crow search algorithm

    Get PDF
    The most common damped filters (DFs) are the second-order, third-order, C-type, and double-tuned filters. Other DFs such as the first-order and band-pass filters exist, but their high operating losses considerably diminish their usage. In this paper, firstly, for the third-order damped filter with equal and unequal capacitors, the relations among their circuit parameters are derived. Secondly, the optimal design problem of the two third-order high-pass filters is formulated by regarding these expressions to minimize the filter cost taking into account both the investment and operating expenses. The total and individual harmonic distortion indices, power factor and the harmonic voltage amplification ratios which measure the filter’s resonance damping capability, are considered as constraints. A recent metaheuristic optimization technique based on the intelligent behavior of crows, known as the Crow Search Algorithm (CSA), is employed for the solution of the formulated design problem. Further, a comparative analysis of the two designs of the third-order high-pass filters and a third-order C-type filter is presented. The results reveal that all the proposed filters guarantee no electrical resonance hazards while maintaining the allowable limits for the various performance indices of the system, load, and filter. Besides, the comparative analysis validates that the C-type filter provides higher power factor, system efficiency and transmission loss improvement than the other two filters, and that the proposed filters achieve almost the same voltage and current harmonic mitigation levels. The solution of the cost minimization problem reveals that the C-type filter and the third-order high-pass filter with equal capacitors have the worst and best resonance damping capabilities respectively, under the worst case conditions. Additionally, the filters with the lowest and highest cost are found as the third-order filter with unequal capacitors and the C-type one, respectively. Besides, the CSA is compared to the genetic algorithm (GA), and particle swarm optimization (PSO) techniques and the results show the fast convergence capability and the effectiveness of the proposed algorithm in solving the problem of optimal design of third-order resonance-free passive filters in distribution networks

    Practical considerations for optimal conductor reinforcement and hosting capacity enhancement in radial distribution systems

    Get PDF
    The high penetration level of distributed generation (DG) units may lead to various problems and operational limit violations in electric power distribution systems if it exceeds a particular limit known as the system’s hosting capacity (HC). In this paper, the problem of selecting the optimal conductor for a real radial distribution system in Egypt is investigated using a recent meta-heuristic algorithm, known as salp swarm optimization. First, a constrained optimization problem is introduced to minimize the combined annual cost of energy losses and the investment cost of the conductors while complying with the system voltage limits and conductor thermal capacities. The results obtained show the effectiveness of the algorithm in satisfying the objective function and constraints. However, the optimization results also show that a reduction in the size of some existing conductors should take place, although this is not allowed by the utilities because of practical reasons such as load growth, variations in loading scenarios, and the possibility of connecting DG units with uncertain penetration levels and locations. Hence, a practical feeder reinforcement approach is proposed to maintain the constraints while considering these uncertainties. Further, a novel feeder reinforcement index is proposed to assist the distribution system operators and planners to determine the feeders that first need to be reinforced. The results obtained show that the proposed reinforcement approach attains a better level of HC than can be obtained with the conventional conductor selection approach under the same testing conditions

    A comprehensive review of renewables and electric vehicles hosting capacity in active distribution networks

    Get PDF
    © Copyright 2023 The Author(s). The excessive integration of renewable distributed generation (RDG) and electric vehicles (EVs) could be considered the two most problematic elements representing the greatest threat to the distribution network (DN) technical operation. In order to avoid going beyond technical limitations, the term hosting capacity (HC) was proposed to define the highest permitted amount of distributed generation (DG) or EVs that can be integrated safely into the DN. The connection of RDGs was first brought to the attention of researchers and DN operators since it accounts for the most notable portion of these technical issues. Hence, the phrase ‘DG-HC’ was initially proposed and evolved significantly over the last few years. Currently, EV integration in most DNs worldwide is still low, but given the worldwide support for clean transportation options, expectations are raised for a significant increase. As a result, it is anticipated that over the next years, the effect of EV integration on the DN will be highly noticeable, requiring greater attention from researchers and DN operators to define the accepted limits of EV penetration levels, ‘EV-HC,’ which is expected to pass along the same line of DG-HC. This article provides an in-depth review of both DG-HC and EV-HC. It first analyses how the DG-HC research has grown over the years and then studies the published EV-HC papers, illustrating to what extent there is a similarity between them and, finally, employs these analyses to expect future development in the EV-HC research area. This article includes the different uses of the term HC, the most common performance indices of DG-HC, the various methods for assessing DG-HC, the different techniques for DG-HC enhancement, the effects of integrating EVs on the DG-HC, and finally, calculating and enhancing methods for EV-HC
    • …
    corecore