22,486 research outputs found
Upper Limits from Counting Experiments with Multiple Pipelines
In counting experiments, one can set an upper limit on the rate of a Poisson
process based on a count of the number of events observed due to the process.
In some experiments, one makes several counts of the number of events, using
different instruments, different event detection algorithms, or observations
over multiple time intervals. We demonstrate how to generalize the classical
frequentist upper limit calculation to the case where multiple counts of events
are made over one or more time intervals using several (not necessarily
independent) procedures. We show how different choices of the rank ordering of
possible outcomes in the space of counts correspond to applying different
levels of significance to the various measurements. We propose an ordering that
is matched to the sensitivity of the different measurement procedures and show
that in typical cases it gives stronger upper limits than other choices. As an
example, we show how this method can be applied to searches for
gravitational-wave bursts, where multiple burst-detection algorithms analyse
the same data set, and demonstrate how a single combined upper limit can be set
on the gravitational-wave burst rate.Comment: 26 pages (CQG style), 8 figures. Added study of robustness of limits
Vetoes for Inspiral Triggers in LIGO Data
Presented is a summary of studies by the LIGO Scientific Collaboration's
Inspiral Analysis Group on the development of possible vetoes to be used in
evaluation of data from the first two LIGO science data runs. Numerous
environmental monitor signals and interferometer control channels have been
analyzed in order to characterize the interferometers' performance. The results
of studies on selected data segments are provided in this paper. The vetoes
used in the compact binary inspiral analyses of LIGO's S1 and S2 science data
runs are presented and discussed.Comment: Submitted to Classical and Quantum Gravity for the GWDAW-8
proceeding
Searches for Gravitational Waves from Binary Neutron Stars: A Review
A new generation of observatories is looking for gravitational waves. These
waves, emitted by highly relativistic systems, will open a new window for ob-
servation of the cosmos when they are detected. Among the most promising
sources of gravitational waves for these observatories are compact binaries in
the final min- utes before coalescence. In this article, we review in brief
interferometric searches for gravitational waves emitted by neutron star
binaries, including the theory, instru- mentation and methods. No detections
have been made to date. However, the best direct observational limits on
coalescence rates have been set, and instrumentation and analysis methods
continue to be refined toward the ultimate goal of defining the new field of
gravitational wave astronomy.Comment: 30 pages, 5 Figures, to appear in "Short-Period Binary Stars:
Observations, Analyses, and Results", Ed.s Eugene F. Milone, Denis A. Leahy,
David W. Hobil
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position and days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares
We propose to search for gravitational waves from PKS 2155-304 as well as
other blazars. PKS 2155-304 emitted a long duration energetic flare in July
2006, with total isotropic equivalent energy released in TeV gamma rays of
approximately ergs. Any possible gravitational wave signals
associated with this outburst should be seen by gravitational wave detectors at
the same time as the electromagnetic signal. During this flare, the two LIGO
interferometers at Hanford and the GEO detector were in operation and
collecting data. For this search we will use the data from multiple
gravitational wave detectors. The method we use for this purpose is a coherent
network analysis algorithm and is called {\tt RIDGE}. To estimate the
sensitivity of the search, we perform numerical simulations. The sensitivity to
estimated gravitational wave energy at the source is about
ergs for a detection probability of 20%. For this search, an end-to-end
analysis pipeline has been developed, which takes into account the motion of
the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data
Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in
response to referee comment
Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if gsim10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way
The Loudest Event Statistic: General Formulation, Properties and Applications
The use of the loudest observed event to generate statistical statements
about rate and strength has become standard in searches for gravitational waves
from compact binaries and pulsars. The Bayesian formulation of the method is
generalized in this paper to allow for uncertainties both in the background
estimate and in the properties of the population being constrained. The method
is also extended to allow rate interval construction. Finally, it is shown how
to combine the results from multiple experiments and a comparison is drawn
between the upper limit obtained in a single search and the upper limit
obtained by combining the results of two experiments each of half the original
duration. To illustrate this, we look at an example case, motivated by the
search for gravitational waves from binary inspiral.Comment: 11 pages, 8 figure
Chi-square test on candidate events from CW signal coherent searches
In a blind search for continuous gravitational wave signals scanning a wide
frequency band one looks for candidate events with significantly large values
of the detection statistic. Unfortunately, a noise line in the data may also
produce a moderately large detection statistic.
In this paper, we describe how we can distinguish between noise line events
and actual continuous wave (CW) signals, based on the shape of the detection
statistic as a function of the signal's frequency. We will analyze the case of
a particular detection statistic, the F statistic, proposed by Jaranowski,
Krolak, and Schutz.
We will show that for a broad-band 10 hour search, with a false dismissal
rate smaller than 1e-6, our method rejects about 70 % of the large candidate
events found in a typical data set from the second science run of the Hanford
LIGO interferometer.Comment: proceedings of GWDAW8, 2003 conference, 12pages, 6 figure
A new numerical method to construct binary neutron star initial data
We present a new numerical method for the generation of binary neutron star
initial data using a method along the lines of the the Wilson-Mathews or the
closely related conformal thin sandwich approach. Our method uses six different
computational domains, which include spatial infinity. Each domain has its own
coordinates which are chosen such that the star surfaces always coincide with
domain boundaries. These properties facilitate the imposition of boundary
conditions. Since all our fields are smooth inside each domain, we are able to
use an efficient pseudospectral method to solve the elliptic equations
associated with the conformal thin sandwich approach. Currently we have
implemented corotating configurations with arbitrary mass ratios, but an
extension to arbitrary spins is possible. The main purpose of this paper is to
introduce our new method and to test our code for several different
configurations.Comment: 18 pages, 8 figures, 1 tabl
- …