337 research outputs found
Towards Scalable Synthesis of Stochastic Control Systems
Formal control synthesis approaches over stochastic systems have received
significant attention in the past few years, in view of their ability to
provide provably correct controllers for complex logical specifications in an
automated fashion. Examples of complex specifications of interest include
properties expressed as formulae in linear temporal logic (LTL) or as automata
on infinite strings. A general methodology to synthesize controllers for such
properties resorts to symbolic abstractions of the given stochastic systems.
Symbolic models are discrete abstractions of the given concrete systems with
the property that a controller designed on the abstraction can be refined (or
implemented) into a controller on the original system. Although the recent
development of techniques for the construction of symbolic models has been
quite encouraging, the general goal of formal synthesis over stochastic control
systems is by no means solved. A fundamental issue with the existing techniques
is the known "curse of dimensionality," which is due to the need to discretize
state and input sets and that results in an exponential complexity over the
number of state and input variables in the concrete system. In this work we
propose a novel abstraction technique for incrementally stable stochastic
control systems, which does not require state-space discretization but only
input set discretization, and that can be potentially more efficient (and thus
scalable) than existing approaches. We elucidate the effectiveness of the
proposed approach by synthesizing a schedule for the coordination of two
traffic lights under some safety and fairness requirements for a road traffic
model. Further we argue that this 5-dimensional linear stochastic control
system cannot be studied with existing approaches based on state-space
discretization due to the very large number of generated discrete states.Comment: 22 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1407.273
StocHy: automated verification and synthesis of stochastic processes
StocHy is a software tool for the quantitative analysis of discrete-time
stochastic hybrid systems (SHS). StocHy accepts a high-level description of
stochastic models and constructs an equivalent SHS model. The tool allows to
(i) simulate the SHS evolution over a given time horizon; and to automatically
construct formal abstractions of the SHS. Abstractions are then employed for
(ii) formal verification or (iii) control (policy, strategy) synthesis. StocHy
allows for modular modelling, and has separate simulation, verification and
synthesis engines, which are implemented as independent libraries. This allows
for libraries to be easily used and for extensions to be easily built. The tool
is implemented in C++ and employs manipulations based on vector calculus, the
use of sparse matrices, the symbolic construction of probabilistic kernels, and
multi-threading. Experiments show StocHy's markedly improved performance when
compared to existing abstraction-based approaches: in particular, StocHy beats
state-of-the-art tools in terms of precision (abstraction error) and
computational effort, and finally attains scalability to large-sized models (12
continuous dimensions). StocHy is available at www.gitlab.com/natchi92/StocHy
Sampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes
This article deals with stochastic processes endowed with the Markov
(memoryless) property and evolving over general (uncountable) state spaces. The
models further depend on a non-deterministic quantity in the form of a control
input, which can be selected to affect the probabilistic dynamics. We address
the computation of maximal reach-avoid specifications, together with the
synthesis of the corresponding optimal controllers. The reach-avoid
specification deals with assessing the likelihood that any finite-horizon
trajectory of the model enters a given goal set, while avoiding a given set of
undesired states. This article newly provides an approximate computational
scheme for the reach-avoid specification based on the Fitted Value Iteration
algorithm, which hinges on random sample extractions, and gives a-priori
computable formal probabilistic bounds on the error made by the approximation
algorithm: as such, the output of the numerical scheme is quantitatively
assessed and thus meaningful for safety-critical applications. Furthermore, we
provide tighter probabilistic error bounds that are sample-based. The overall
computational scheme is put in relationship with alternative approximation
algorithms in the literature, and finally its performance is practically
assessed over a benchmark case study
Symbolic Models for Stochastic Switched Systems: A Discretization and a Discretization-Free Approach
Stochastic switched systems are a relevant class of stochastic hybrid systems
with probabilistic evolution over a continuous domain and control-dependent
discrete dynamics over a finite set of modes. In the past few years several
different techniques have been developed to assist in the stability analysis of
stochastic switched systems. However, more complex and challenging objectives
related to the verification of and the controller synthesis for logic
specifications have not been formally investigated for this class of systems as
of yet. With logic specifications we mean properties expressed as formulae in
linear temporal logic or as automata on infinite strings. This paper addresses
these complex objectives by constructively deriving approximately equivalent
(bisimilar) symbolic models of stochastic switched systems. More precisely,
this paper provides two different symbolic abstraction techniques: one requires
state space discretization, but the other one does not require any space
discretization which can be potentially more efficient than the first one when
dealing with higher dimensional stochastic switched systems. Both techniques
provide finite symbolic models that are approximately bisimilar to stochastic
switched systems under some stability assumptions on the concrete model. This
allows formally synthesizing controllers (switching signals) that are valid for
the concrete system over the finite symbolic model, by means of mature
automata-theoretic techniques in the literature. The effectiveness of the
results are illustrated by synthesizing switching signals enforcing logic
specifications for two case studies including temperature control of a six-room
building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1302.386
Certified Reinforcement Learning with Logic Guidance
This paper proposes the first model-free Reinforcement Learning (RL)
framework to synthesise policies for unknown, and continuous-state Markov
Decision Processes (MDPs), such that a given linear temporal property is
satisfied. We convert the given property into a Limit Deterministic Buchi
Automaton (LDBA), namely a finite-state machine expressing the property.
Exploiting the structure of the LDBA, we shape a synchronous reward function
on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces
that probabilistically satisfy the linear temporal property. This probability
(certificate) is also calculated in parallel with policy learning when the
state space of the MDP is finite: as such, the RL algorithm produces a policy
that is certified with respect to the property. Under the assumption of finite
state space, theoretical guarantees are provided on the convergence of the RL
algorithm to an optimal policy, maximising the above probability. We also show
that our method produces ''best available'' control policies when the logical
property cannot be satisfied. In the general case of a continuous state space,
we propose a neural network architecture for RL and we empirically show that
the algorithm finds satisfying policies, if there exist such policies. The
performance of the proposed framework is evaluated via a set of numerical
examples and benchmarks, where we observe an improvement of one order of
magnitude in the number of iterations required for the policy synthesis,
compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions
The goal of this work is to formally abstract a Markov process evolving in
discrete time over a general state space as a finite-state Markov chain, with
the objective of precisely approximating its state probability distribution in
time, which allows for its approximate, faster computation by that of the
Markov chain. The approach is based on formal abstractions and employs an
arbitrary finite partition of the state space of the Markov process, and the
computation of average transition probabilities between partition sets. The
abstraction technique is formal, in that it comes with guarantees on the
introduced approximation that depend on the diameters of the partitions: as
such, they can be tuned at will. Further in the case of Markov processes with
unbounded state spaces, a procedure for precisely truncating the state space
within a compact set is provided, together with an error bound that depends on
the asymptotic properties of the transition kernel of the original process. The
overall abstraction algorithm, which practically hinges on piecewise constant
approximations of the density functions of the Markov process, is extended to
higher-order function approximations: these can lead to improved error bounds
and associated lower computational requirements. The approach is practically
tested to compute probabilistic invariance of the Markov process under study,
and is compared to a known alternative approach from the literature.Comment: 29 pages, Journal of Logical Methods in Computer Scienc
- …