3,416 research outputs found
The Hartree ensemble approximation revisited: The "symmetric phase"
The Hartree ensemble approximation is studied in the ``symmetric phase'' of
1+1 dimensional lambda phi^4 theory. In comparison with the ``broken phase''
studied previously, it is shown that the dynamical evolution of observables
such as the particle distribution, energy exchange and auto-correlation
functions, is substantially slower. Approximate thermalization is found only
for relatively large energy densities and couplings.Comment: 17 pages RevTeX, 16 figures, 3 tables, uses amsmath and feynmp.
Extended some sections, reordered Sec.IV, added 3 refs, numerical typo
corrected, published versio
Transport properties of microstructured ultrathin films of La0.67Ca0.33MnO3 on SrTiO3
We have investigated the electrical transport properties of 8 nm thick
La0.67Ca0.33MnO3 films, sputter-deposited on SrTiO3 (STO), and etched into 5
micrometer-wide bridges by Ar-ion etching. We find that even slight overetching
of the film leads to conductance of the STO substrate, and asymmetric and
non-linear current-voltage (I-V) characteristics. However, a brief oxygen
plasma etch allows full recovery of the insulating character of the substrate.
The I-V characteristics of the bridges are then fully linear over a large range
of current densities. We find colossal magnetoresistance properties typical for
strained LCMO on STO but no signature of non-linear effects (so-called
electroresistance) connected to electronic inhomogeneites. In the metallic
state below 150 K, the highest current densities lead to heating effects and
non-linear I-V characteristics.Comment: 3 pages, 5 figure
Nonequilibrium time evolution of the spectral function in quantum field theory
Transport or kinetic equations are often derived assuming a quasi-particle
(on-shell) representation of the spectral function. We investigate this
assumption using a three-loop approximation of the 2PI effective action in real
time, without a gradient expansion or on-shell approximation. For a scalar
field in 1+1 dimensions the nonlinear evolution, including the integration over
memory kernels, can be solved numerically. We find that a spectral function
approximately described by a nonzero width emerges dynamically. During the
nonequilibrium time evolution the Wigner transformed spectral function is
slowly varying, even in presence of strong qualitative changes in the effective
particle distribution. These results may be used to make further analytical
progress towards a quantum Boltzmann equation including off-shell effects and a
nonzero width.Comment: 20 pages with 6 eps figures, explanation and references added; to
appear in Phys.Rev.
Inhomogeneous superconductivity induced in a weak ferromagnet
Under certain conditions, the order parameter induced by a superconductor (S)
in a ferromagnet (F) can be inhomogeneous and oscillating, which results e.g.
in the so-called pi-coupling in S/F/S junctions. In principle, the
inhomogeneous state can be induced at T_c as function of the F-layer thickness
d_F in S/F bilayers and multilayers, which should result in a dip-like
characteristic of T_c(d_F). We show the results of measurements on the S/F
system Nb/Cu_{1-x}Ni_x, for Ni-concentrations in the range x = 0.5-0.7, where
such effects might be expected. We find that the critical thickness for the
occurrence of superconductivity is still relatively high, even for these weak
ferromagnets. The resulting dip then is intrinsically shallow and difficult to
observe, which explains the lack of a clear signature in the T_c(d_F) data.Comment: 4 pages, 4 figures. To be publishedin Physica C (proceedings of the
Second Euroconference on Vortex Matter in Superconductors, Crete, 2001
Spin dynamics in a superconductor / ferromagnet proximity system
The ferromagnetic resonance of thin sputtered Ni80Fe20 films grown on Nb is
measured. By varying the temperature and thickness of the Nb the role of the
superconductivity on the whole ferromagnetic layer in these heterostructures is
explored. The change in the spin transport properties below the superconducting
transition of the Nb is found to manifest itself in the Ni80Fe20 layer by a
sharpening in the resonance of the ferromagnet, or a decrease in the effective
Gilbert damping co-efficient. This dynamic proximity effect is in contrast to
low frequency studies in these systems, where the effect of the superconductor
is confined to a small region in the ferromagnet. We interpret this in terms of
the spin pumping model.Comment: 4 pages, 4 figures, to be submitted for publicatio
Anomalous transport in half-metallic ferromagnetic CrO2
We have investigated transport properties of CrO2 thin films deposited on
TiO2 and sapphire substrates. The films are good metals down to low
temperatures. The residual resistivity is of the order of 6 micro-ohhmcm for
films deposited on TiO2 and two times higher for films on sapphire substrates.
The sign of the magnetoresistance (MR) changes from negative to positive at a
temperature around 100 K. This fact, as well as a rapid change in the ordinary
and anomalous Hall coefficients suggest a change in the electronic state. At
lower temperatures the MR is a linear function of the applied field. This
linear dependence might be explained as intergrain tunneling MR. This
interpretation is also suggested by the angular MR. The planar Hall effect
measurements reveal that the CrO2 thin films are not in a single magnetic
domain state even for films deposited on an isostructural TiO2 substrate
- …