14 research outputs found
Memories of the future
The year is 2020. Sheffield Universityâs MSc in Electronic & Digital Library Management has been running for 10 years. What paths have its graduatesâ careers taken
Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Correction to: Nature Geneticshttps://doi.org/10.1038/s41588-023-01314-0, published online 13 March 2023. In the version of the article initially published, the sample sizes in the main text and Supplementary Tables 1 and 2 were incorrect. In the abstract, the last paragraph of the Introduction, the first paragraph of the Results, the top box in Figure 1a and the Supplementary Information, the total sample size has been corrected from 580,869 to 588,452 participants and the size of the European cohort from 468,062 to 475,645. Some of the effect sizes in Supplementary Table 14 (columns W, Z, AC, AF) had the wrong sign. There was also an error in Supplementary Table 3 where the sample size instead of the variant count was shown for EXCEED. The errors do not affect the conclusions of the study. Additionally, two acknowledgments for use of INTERVAL pQTL and Lung eQTL consortium data were omitted from the Supplementary Information. These errors have been corrected in the Supplementary Information and HTML and PDF versions of the article
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by â„2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
The Simulation and Prototyping of a Density-Based Smart Traffic Control System for Learning Purposes
 With the tremendous technological progress and the widespread use of a variety of technologies, we note how smart cities are providing services efficiently by using technologies. The aim of this project is to build a Smart Traffic Control System (STCS) to facilitate and optimize traffic flow, minimize traffic congestion, and reduce the waiting time by detecting the density on each street. This work has been carried on four phases. Firstly, collecting data by a questionnaire and we received 331 responses. Secondly, using Proteus simulation. Thirdly, building a low fidelity prototype, and fourthly: building the STCS model by using hardware (Arduino tools) and software (Arduino Software IDE). Finally, we learned how to build a system and we recommend using such a system in busy roads to reduced congestion and making traffic flow more efficient
The Simulation and Prototyping of a Density-Based Smart Traffic Control System for Learning Purposes
 With the tremendous technological progress and the widespread use of a variety of technologies, we note how smart cities are providing services efficiently by using technologies. The aim of this project is to build a Smart Traffic Control System (STCS) to facilitate and optimize traffic flow, minimize traffic congestion, and reduce the waiting time by detecting the density on each street. This work has been carried on four phases. Firstly, collecting data by a questionnaire and we received 331 responses. Secondly, using Proteus simulation. Thirdly, building a low fidelity prototype, and fourthly: building the STCS model by using hardware (Arduino tools) and software (Arduino Software IDE). Finally, we learned how to build a system and we recommend using such a system in busy roads to reduced congestion and making traffic flow more efficient.</span
Biosynthesis Effect of Egg White on Formation and Characteristics of NiO/NiCo<sub>2</sub>O<sub>4</sub> Nanocomposites
For the successful production of NiO/NiCo2O4 nanocomposites, the environmentally friendly method of egg white supplementation has been used. Several analytical techniques were employed to characterize the morphology, purity, and crystal structure of the as-prepared nanocomposites. These techniques included transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The physical adsorption and magnetic properties of the investigated composite were determined using the BrunauerâEmmettâTeller (BET) method and a vibrating-sample magnetometer (VSM), respectively. The results have shown that the as-prepared composite particles had diameters of about 10â25 nm, with uniform distribution. The XRD analysis showed that the as-synthesized composites consisted entirely of cubic structures of both NiO and spinel NiCo2O4 nanoparticles, with a space group of Fd3m. The FTIR analysis showed characteristic vibration modes related to metal oxides, confirming the formation of composites containing NiO and NiCo2O4 crystallites. The investigated compositesâ saturation magnetization (MS) and coercivity (HC) were easily controllable because of the ingredientsâ ferromagnetic (NiCo2O4) and antiferromagnetic (NiO) characteristics. The excellent combination of the NiO/NiCo2O4 nanocompositesâ properties is anticipated to make this system suitable for a wide range of applications
A population study of clinically actionable genetic variation affecting drug response from the Middle East
Clinical implementation of pharmacogenomics will help in personalizing drug prescriptions and alleviate the personal and financial burden due to inefficacy and adverse reactions to drugs. However, such implementation is lagging in many parts of the world, including the Middle East, mainly due to the lack of data on the distribution of actionable pharmacogenomic variation in these ethnicities. We analyzed 6,045 whole genomes from the Qatari population for the distribution of allele frequencies of 2,629 variants in 1,026 genes known to affect 559 drugs or classes of drugs. We also performed a focused analysis of genotypes or diplotypes of 15 genes affecting 46 drugs, which have guidelines for clinical implementation and predicted their phenotypic impact. The allele frequencies of 1,320 variants in 703 genes affecting 299 drugs or class of drugs were significantly different between the Qatari population and other world populations. On average, Qataris carry 3.6 actionable genotypes/diplotypes, affecting 13 drugs with guidelines for clinical implementation, and 99.5% of the individuals had at least one clinically actionable genotype/diplotype. Increased risk of simvastatin-induced myopathy could be predicted in ~32% of Qataris from the diplotypes of SLCO1B1, which is higher compared to many other populations, while fewer Qataris may need tacrolimus dosage adjustments for achieving immunosuppression based on the CYP3A5 diplotypes compared to other world populations. Distinct distribution of actionable pharmacogenomic variation was also observed among the Qatari subpopulations. Our comprehensive study of the distribution of actionable genetic variation affecting drugs in a Middle Eastern population has potential implications for preemptive pharmacogenomic implementation in the region and beyond. 2022, The Author(s).PVJ is supported by faculty funding from the College of Health & Life Sciences, HBKU. Qatar Biobank and Qatar Genome Program are Research, Development & Innovation's entities within Qatar Foundation for Education, Science and Community Development. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.Scopu
Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes
Arab populations are largely understudied, notably their genetic structure and history. Here we present an in-depth analysis of 6,218 whole genomes from Qatar, revealing extensive diversity as well as genetic ancestries representing the main founding Arab genealogical lineages of Qahtanite (Peninsular Arabs) and Adnanite (General Arabs and West Eurasian Arabs). We find that Peninsular Arabs are the closest relatives of ancient hunter-gatherers and Neolithic farmers from the Levant, and that founder Arab populations experienced multiple splitting events 12â20 kya, consistent with the aridification of Arabia and farming in the Levant, giving rise to settler and nomadic communities. In terms of recent genetic flow, we show that these ancestries contributed significantly to European, South Asian as well as South American populations, likely as a result of Islamic expansion over the past 1400 years. Notably, we characterize a large cohort of men with the ChrY J1a2b haplogroup (n = 1,491), identifying 29 unique sub-haplogroups. Finally, we leverage genotype novelty to build a reference panel of 12,432 haplotypes, demonstrating improved genotype imputation for both rare and common alleles in Arabs and the wider Middle East
Vagus nerve stimulation therapy in people with drug-resistant epilepsy (CORE-VNS): rationale and design of a real-world post-market comprehensive outcomes registry
Introduction The Vagus Nerve Stimulation Therapy System (VNS Therapy) is an adjunctive neuromodulatory therapy that can be efficacious in reducing the frequency and severity of seizures in people with drug-resistant epilepsy (DRE). CORE-VNS aims to examine the long-term safety and clinical outcomes of VNS in people with DRE.Methods and analysis The CORE-VNS study is an international, multicentre, prospective, observational, all-comers, post-market registry. People with DRE receiving VNS Therapy for the first time as well as people being reimplanted with VNS Therapy are eligible. Participants have a baseline visit (prior to device implant). They will be followed for a minimum of 36 months and a maximum of 60 months after implant. Analysis endpoints include seizure frequency (average number of events per month), seizure severity (individual-rated categorical outcome including very mild, mild, moderate, severe or very severe) as well as non-seizure outcomes such as adverse events, use of antiseizure medications, use of other non-pharmacological therapies, quality of life, validated measures of quality of sleep (Pittsburgh Sleep Quality Index or Childrenâs Sleep Habit Questionnaire) and healthcare resource utilisation. While the CORE-VNS registry was not expressly designed to test hypotheses, subgroup analyses and exploratory analysis that require hypothesis testing will be conducted across propensity score matched treatment groups, where possible based on sampling.Ethics and dissemination The CORE-VNS registry has already enrolled 823 participants from 61 centres across 15 countries. Once complete, CORE-VNS will represent one of the largest real-world clinical data sets to allow a more comprehensive understanding of the management of DRE with adjunctive VNS. Manuscripts derived from this database will shed important new light on the characteristics of people receiving VNS Therapy; the practical use of VNS across different countries, and factors influencing long-term response.Trail registration number NCT03529045