80 research outputs found

    Learning Word Representations from Relational Graphs

    Get PDF
    Attributes of words and relations between two words are central to numerous tasks in Artificial Intelligence such as knowledge representation, similarity measurement, and analogy detection. Often when two words share one or more attributes in common, they are connected by some semantic relations. On the other hand, if there are numerous semantic relations between two words, we can expect some of the attributes of one of the words to be inherited by the other. Motivated by this close connection between attributes and relations, given a relational graph in which words are inter- connected via numerous semantic relations, we propose a method to learn a latent representation for the individual words. The proposed method considers not only the co-occurrences of words as done by existing approaches for word representation learning, but also the semantic relations in which two words co-occur. To evaluate the accuracy of the word representations learnt using the proposed method, we use the learnt word representations to solve semantic word analogy problems. Our experimental results show that it is possible to learn better word representations by using semantic semantics between words.Comment: AAAI 201

    Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes

    Full text link
    An ability to predict the popularity dynamics of individual items within a complex evolving system has important implications in an array of areas. Here we propose a generative probabilistic framework using a reinforced Poisson process to model explicitly the process through which individual items gain their popularity. This model distinguishes itself from existing models via its capability of modeling the arrival process of popularity and its remarkable power at predicting the popularity of individual items. It possesses the flexibility of applying Bayesian treatment to further improve the predictive power using a conjugate prior. Extensive experiments on a longitudinal citation dataset demonstrate that this model consistently outperforms existing popularity prediction methods.Comment: 8 pages, 5 figure; 3 table

    Constrained Pure Nash Equilibria in Polymatrix Games

    Get PDF
    We study the problem of checking for the existence of constrained pure Nash equilibria in a subclass of polymatrix games defined on weighted directed graphs. The payoff of a player is defined as the sum of nonnegative rational weights on incoming edges from players who picked the same strategy augmented by a fixed integer bonus for picking a given strategy. These games capture the idea of coordination within a local neighbourhood in the absence of globally common strategies. We study the decision problem of checking whether a given set of strategy choices for a subset of the players is consistent with some pure Nash equilibrium or, alternatively, with all pure Nash equilibria. We identify the most natural tractable cases and show NP or coNP-completness of these problems already for unweighted DAGs.Comment: Extended version of a paper accepted to AAAI1

    A Model for Learning Description Logic Ontologies Based on Exact Learning

    Get PDF
    We investigate the problem of learning description logic (DL) ontologies in Angluin et al.’s framework of exact learning via queries posed to an oracle. We consider membership queries of the form “is a tuple a of individuals a certain answer to a data retrieval query q in a given ABox and the unknown target ontology?” and completeness queries of the form “does a hypothesis ontology entail the unknown target ontology?” Given a DL L and a data retrieval query language Q, we study polynomial learnability of ontologies in L using data retrieval queries in Q and provide an almost complete classification for DLs that are fragments of EL with role inclusions and of DL-Lite and for data retrieval queries that range from atomic queries and EL/ELI-instance queries to conjunctive queries. Some results are proved by non-trivial reductions to learning from subsumption examples

    A Semantical Analysis of Second-Order Propositional Modal Logic

    Get PDF
    International audienceThis paper is aimed as a contribution to the use of formal modal languages in Artificial Intelligence. We introduce a multi-modal version of Second-order Propositional Modal Logic (SOPML), an extension of modal logic with propositional quantification, and illustrate its usefulness as a specification language for knowledge representation as well as temporal and spatial reasoning. Then, we define novel notions of (bi)simulation and prove that these preserve the interpretation of SOPML formulas. Finally, we apply these results to assess the expressive power of SOPML

    A Scalable Framework to Choose Sellers in E-Marketplaces Using POMDPs

    Get PDF
    In multiagent e-marketplaces, buying agents need to select good sellers by querying other buyers (called advisors). Partially Observable Markov Decision Processes (POMDPs) have shown to be an effective framework for optimally selecting sellers by selectively querying advisors. However, current solution methods do not scale to hundreds or even tens of agents operating in the e-market. In this paper, we propose the Mixture of POMDP Experts (MOPE) technique, which exploits the inherent structure of trust-based domains, such as the seller selection problem in e-markets, by aggregating the solutions of smaller sub-POMDPs. We propose a number of variants of the MOPE approach that we analyze theoretically and empirically. Experiments show that MOPE can scale up to a hundred agents thereby leveraging the presence of more advisors to significantly improve buyer satisfaction
    • …
    corecore