8 research outputs found

    The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)

    No full text
    We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables

    Multiple Factorizations of Bivariate Linear Partial Differential Operators

    Full text link
    We study the case when a bivariate Linear Partial Differential Operator (LPDO) of orders three or four has several different factorizations. We prove that a third-order bivariate LPDO has a first-order left and right factors such that their symbols are co-prime if and only if the operator has a factorization into three factors, the left one of which is exactly the initial left factor and the right one is exactly the initial right factor. We show that the condition that the symbols of the initial left and right factors are co-prime is essential, and that the analogous statement "as it is" is not true for LPDOs of order four. Then we consider completely reducible LPDOs, which are defined as an intersection of principal ideals. Such operators may also be required to have several different factorizations. Considering all possible cases, we ruled out some of them from the consideration due to the first result of the paper. The explicit formulae for the sufficient conditions for the complete reducibility of an LPDO were found also

    Factorized Tree-level Scattering in AdS_4 x CP^3

    Full text link
    AdS_4/CFT_3 duality relating IIA string theory on AdS_4 x CP^3 to N=6 superconformal Chern-Simons theory provides an arena for studying aspects of integrability in a new potentially exactly solvable system. In this paper we explore the tree-level worldsheet scattering for strings on AdS_4 x CP^3. We compute all bosonic four-, five- and six-point amplitudes in the gauge-fixed action and demonstrate the absence of particle production.Comment: 23 pages, v2. references adde

    Classification and nondegeneracy of SU(n+1)SU(n+1) Toda system with singular sources

    Full text link
    We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb R^2}e^{u_i} dx -1,, \delta_0isDiracmeasureat0,andthecoefficients is Dirac measure at 0, and the coefficients a_{ij}formthestandardtridiagonalCartanmatrix.Inthispaper,(i)wecompletelyclassifythesolutionsandobtainthequantizationresult: form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result: j=1naijR2eujdx=4π(2+γi+γn+1i),      1in.\sum_{j=1}^n a_{ij}\int_{\R^2}e^{u_j} dx = 4\pi (2+\gamma_i+\gamma_{n+1-i}), \;\;\forall\; 1\leq i \leq n.ThisgeneralizestheclassificationresultbyJostandWangfor This generalizes the classification result by Jost and Wang for \gamma_i=0,, \forall \;1\leq i\leq n.(ii)Weprovethatif. (ii) We prove that if \gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Zforall for all 1\leq i\leq j\leq n,thenanysolution, then any solution u_i$ is \textit{radially symmetric} w.r.t. 0. (iii) We prove that the linearized equation at any solution is \textit{non-degenerate}. These are fundamental results in order to understand the bubbling behavior of the Toda system.Comment: 28 page
    corecore