701 research outputs found
Microscopic nonequilibrium theory of double-barrier Josephson junctions
We study nonequilibrium charge transport in a double-barrier Josephson
junction, including nonstationary phenomena, using the time-dependent
quasiclassical Keldysh Green's function formalism. We supplement the kinetic
equations by appropriate time-dependent boundary conditions and solve the
time-dependent problem in a number of regimes. From the solutions,
current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and
how the subgap conductance behaves as function of junction parameters. A
time-dependent nonequilibrium contribution to the distribution function is
found to cause a non-zero averaged supercurrent even in the presence of an
applied voltage. Energy relaxation due to inelastic scattering in the
interlayer has a prominent role in determining the transport properties of
double-barrier junctions. Actual inelastic scattering parameters are derived
from experiments. It is shown as an application of the microscopic model, how
the nature of the intrinsic shunt in double-barrier junctions can be explained
in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.
Coherent Charge Transport in Metallic Proximity Structures
We develop a detailed microscopic analysis of electron transport in normal
diffusive conductors in the presence of proximity induced superconducting
correlation. We calculated the linear conductance of the system, the profile of
the electric field and the densities of states. In the case of transparent
metallic boundaries the temperature dependent conductance has a non-monotoneous
``reentrant'' structure. We argue that this behavior is due to nonequilibrium
effects occuring in the normal metal in the presence of both superconducting
correlations and the electric field there. Low transparent tunnel barriers
suppress the nonequilibrium effects and destroy the reentrant behavior of the
conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm
oscillations with the period as a function of the magnetic flux
inside the loop. The amplitude of these oscillations also demonstrates
the reentrant behavior vanishing at and decaying as at relatively
large temperatures. The latter behavior is due to low energy correlated
electrons which penetrate deep into the normal metal and ``feel'' the effect of
the magnetic flux . We point out that the density of states and thus the
``strengh'' of the proximity effect can be tuned by the value of the flux
inside the loop. Our results are fully consistent with recent experimental
findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.
Hydrodynamic fluctuations of a liquid with anisotropic molecules
A general theory of hydrodynamic fluctuations of a liquid with anisotropic
molecules, in the presence of steady simple shear, has been proposed.Comment: 19 pages, to be published in Physica A, Sept. 200
Impurity band in clean superconducting weak links
Weak impurity scattering produces a narrow band with a finite density of
states near the phase difference in the mid-gap energy spectrum of
a macroscopic superconducting weak link. The equivalent distribution of
transmission coefficients of various cunducting quantum channels is found.Comment: 4 pages, 4 figures, changed conten
Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents
The influence of electron reflection on dc Josephson effect in a ballistic
point contact with transport current in the banks is considered theoretically.
The effect of finite transparency on the vortex-like currents near the contact
and at the phase difference which has been predicted recently
\cite{KOSh}, is investigated. We show that at low temperatures even a small
reflection on the contact destroys the mentioned vortex-like current states,
which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil
Local density of states in superconductor-strong ferromagnet structures
We study the dependence of the local density of states (LDOS) on coordinates
for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming
that the exchange energy h in the ferromagnet is sufficiently large: where is the elastic relaxation time. This limit cannot be
described by the Usadel equation and we solve the more general Eilenberger
equation. We demonstrate that, in the main approximation in the parameter , the proximity effect does not lead to a modification of the LDOS
in the S/F system and a non-trivial dependence on coordinates shows up in next
orders in In the S/F/S sandwich the correction to the LDOS is
nonzero in the main approximation and depends on the phase difference between
the superconductors. We also calculate the superconducting critical temperature
for the bilayered system and show that it does not depend on the
exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure
Вплив жорсткого ультрафіолету на структуру та оптичні властивості шарів CdS та CdTe
The influence of hard ultraviolet radiation on the crystalline structure, surface morphology and optical characteristics of CdS and CdTe semiconductor layers obtained by direct current magnetron sputtering are investigated. It was established that the optical characteristics of the studied films CdS and CdTe are insensitive to hard ultraviolet irradiation. The crystalline structure of the CdS and CdTe layers is changed after irradiation. The period of the lattice for cadmium sulfide films increases from c = 6.77(01) Å to c = 6.78(88) Å, which may be due to the formation of point defects and defective complexes. Decrease the integral FWHM of the peaks on the X-ray diffraction patterns of the layers of CdS and CdTe was observed, due to the increase of the coherent scattering regions as a result in the process of near-surface layers partial recrystallization of the investigated films.Досліджено вплив жорсткого ультрафіолетового випромінювання на кристалічну структуру, морфологію поверхні та оптичні характеристики напівпровідникових шарів CdS та CdTe, отриманих магнетронним розпиленням на постійному струмі. Встановлено, що оптичні характеристики досліджених плівок CdS та CdTe нечутливі до опромінення жорстким ультрафіолетом. Кристалічна структура шарів плівок CdS і CdTe після опромінення змінюються. Період ґратки для плівок сульфіду кадмію збільшується від с = 6,77(01) Å до с = 6,78(88) Å, що може бути пов’язано з утворенням точкових дефектів та дефектних комплексів. В результаті опромінення жорстким ультрафіолетом спостерігається зменшення ширини піків на рентгендифрактограмах шарів CdS і CdTe, що пов’язано зі збільшенням областей когерентного розсіювання в результаті часткової рекристалізації приповерхневих шарів досліджених плівок
Ballistic versus diffusive magnetoresistance of a magnetic point contact
The quasiclassical theory of a nanosize point contacts (PC) between two
ferromagnets is developed. The maximum available magnetoresistance values in PC
are calculated for ballistic versus diffusive transport through the area of a
contact. In the ballistic regime the magnetoresistance in excess of few
hundreds percents is obtained for the iron-group ferromagnets. The necessary
conditions for realization of so large magnetoresistance in PC, and the
experimental results by Garcia et al are discussedComment: 4 pages, TEX, 1 Figur
Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor
A boundary between two d-wave superconductors or an s-wave and a d-wave
superconductor generally breaks time-reversal symmetry and can generate
spontaneous currents due to proximity effect. On the other hand, surfaces and
interfaces in d-wave superconductors can produce localized current-carrying
states by supporting the T-breaking combination of dominant and subdominant
order parameters. We investigate spontaneous currents in the presence of both
mechanisms and show that at low temperature, counter-intuitively, the
subdominant coupling decreases the amplitude of the spontaneous current due to
proximity effect. Superscreening of spontaneous currents is demonstrated to be
present in any d-d (but not s-d) junction and surface with d+id' order
parameter symmetry. We show that this supercreening is the result of
contributions from the local magnetic moment of the condensate to the
spontaneous current.Comment: 4 pages, 5 figures, RevTe
- …