16 research outputs found

    Quantum phase transition in a two-channel-Kondo quantum dot device

    Full text link
    We develop a theory of electron transport in a double quantum dot device recently proposed for the observation of the two-channel Kondo effect. Our theory provides a strategy for tuning the device to the non-Fermi-liquid fixed point, which is a quantum critical point in the space of device parameters. We explore the corresponding quantum phase transition, and make explicit predictions for behavior of the differential conductance in the vicinity of the quantum critical point

    Functional Integral Approach to the Single Impurity Anderson Model

    Full text link
    Recently, a functional integral representation was proposed by Weller (Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the fermionic fields strictly satisfy the constraint of no double occupancy at each lattice site. This is achieved by introducing spin dependent Bose fields. The functional integral method is applied to the single impurity Anderson model both in the Kondo and mixed-valence regime. The f-electron Green's function and susceptibility are calculated using an Ising-like representation for the Bose fields. We discuss the difficulty to extract a spectral function from the knowledge of the imaginary time Green's function. The results are compared with NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/

    Fusion of the qq-Vertex Operators and its Application to Solvable Vertex Models

    Get PDF
    We diagonalize the transfer matrix of the inhomogeneous vertex models of the 6-vertex type in the anti-ferroelectric regime intoducing new types of q-vertex operators. The special cases of those models were used to diagonalize the s-d exchange model\cite{W,A,FW1}. New vertex operators are constructed from the level one vertex operators by the fusion procedure and have the description by bosons. In order to clarify the particle structure we estabish new isomorphisms of crystals. The results are very simple and figure out representation theoretically the ground state degenerations.Comment: 35 page

    Flow equation analysis of the anisotropic Kondo model

    Full text link
    We use the new method of infinitesimal unitary transformations to calculate zero temperature correlation functions in the strong-coupling phase of the anisotropic Kondo model. We find the dynamics on all energy scales including the crossover behaviour from weak to strong coupling. The integrable structure of the Hamiltonian is not used in our approach. Our method should also be useful in other strong-coupling models since few other analytical methods allow the evaluation of their correlation functions on all energy scales.Comment: 4 pages RevTeX, 2 eps figures include

    Exact perturbative solution of the Kondo problem

    Full text link
    We explicitly evaluate the infinite series of integrals that appears in the "Anderson-Yuval" reformulation of the anisotropic Kondo problem in terms of a one-dimensional Coulomb gas. We do this by developing a general approach relating the anisotropic Kondo problem of arbitrary spin with the boundary sine-Gordon model, which describes impurity tunneling in a Luttinger liquid and in the fractional quantum Hall effect. The Kondo solution then follows from the exact perturbative solution of the latter model in terms of Jack polynomials.Comment: 4 pages in revtex two-colum

    Non-Fermi-liquid behavior in the Kondo lattices induced by peculiarities of magnetic ordering and spin dynamics

    Full text link
    A scaling consideration of the Kondo lattices is performed with account of singularities in the spin excitation spectral function. It is shown that a non-Fermi-liquid (NFL) behavior between two critical values of the bare sfs-f coupling constant occurs naturally for complicated magnetic structures with several magnon branches. This may explain the fact that a NFL behavior takes place often in the heavy-fermion systems with peculiar spin dynamics. Another kind of a NFL-like state (with different critical exponents) can occur for simple antiferromagnets with account of magnon damping, and for paramagnets, especially with two-dimensional character of spin fluctuations. The mechanisms proposed lead to some predictions about behavior of specific heat, resistivity, magnetic susceptibility, and anisotropy parameter, which can be verified experimentally.Comment: 16 pages, RevTeX, 4 Postscript figures. Extended versio

    Entanglement between a qubit and the environment in the spin-boson model

    Get PDF
    The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α\alpha, the strength of the ohmic coupling to the environment, and ϵ\epsilon, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ϵ=0\epsilon=0, the entanglement increases monotonically with α\alpha, until it becomes maximal for αlim1\alpha \lim 1^-. For fixed ϵ>0\epsilon>0, the entanglement is a maximum as a function of α\alpha for a value, α=αM<1\alpha = \alpha_M < 1.Comment: 4 pages, 3 figures. Shortened version restricted to groundstate entanglemen

    Low-Temperature Thermodynamics of A2(2)A^{(2)}_2 and su(3)-invariant Spin Chains

    Get PDF
    We formulate the thermodynamic Bethe Ansatz (TBA) equations for the closed (periodic boundary conditions) A2(2)A^{(2)}_2 quantum spin chain in an external magnetic field, in the (noncritical) regime where the anisotropy parameter η\eta is real. In the limit η0\eta \to 0, we recover the TBA equations of the antiferromagnetic su(3)-invariant chain in the fundamental representation. We solve these equations for low temperature and small field, and calculate the specific heat and magnetic susceptibility.Comment: 31 pages, UMTG-16

    Multi-Channel Kondo Necklace

    Full text link
    A multi--channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean--field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The NN conduction electron channels are represented by NN sets of pseudospins \vt_{j}, j=1,...,Nj=1, ... , N, which are all antiferromagnetically coupled to a periodic array of |\vs|=1/2 spins. Exploiting permutation symmetry in the channel index jj allows us to write down the self--consistency equation for general NN. For N>2N>2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi--channel problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX, submitted for publicatio

    Spinless impurities and Kondo-like behavior in strongly correlated electron systems

    Get PDF
    We investigate magnetic properties induced by a spinless impurity in strongly correlated electron systems, i.e. the Hubbard model in the spatial dimension D=1,2,D=1,2, and 3. For the 1D system exploiting the Bethe ansatz exact solution we find that the spin susceptibility and the local density of states in the vicinity of a spinless impurity show divergent behaviors. The results imply that the induced local moment is not completely quenched at any finite temperatures. On the other hand, the spin lattice relaxation rate obtained by bosonization and boundary conformal field theory satisfies a relation analogous to the Korringa law, 1/T1Tχ21/T_1T \sim \chi^2. In the 2D and 3D systems, the analysis based upon the antiferromagnetically correlated Fermi liquid theory reveals that the antiferromagnetic spin fluctuation developed in the bulk is much suppressed in the vicinity of a spinless impurity, and thus magnetic properties are governed by the induced local moment, which leads to the Korringa law of 1/T11/T_1.Comment: 9pages,1figure, final version accepted for publication in Phys.Rev.B(Jan2001
    corecore