9 research outputs found

    Magnetic breakdown in a normal-metal - superconductor proximity sandwich

    Full text link
    We study the magnetic response of a clean normal-metal slab of finite thickness in proximity with a bulk superconductor. We determine its free energy and identify two (meta-)stable states, a diamagnetic one where the applied field is effectively screened, and a second state, where the field penetrates the normal-metal layer. We present a complete characterization of the first order transition between the two states which occurs at the breakdown field, including its spinodals, the jump in the magnetization, and the latent heat. The bistable regime terminates at a critical temperature above which the sharp transition is replaced by a continuous cross-over. We compare the theory with experiments on normal-superconducting cylinders.Comment: 7 pages Revtex, 3 Postscript figures, needs psfig.te

    Iordanskii Force and the Gravitational Aharonov-Bohm effect for a Moving Vortex

    Full text link
    I discuss the scattering of phonons by a vortex moving with respect to a superfluid condensate. This allows us to test the compatibility of the scattering-theory derivation of the Iordanskii force with the galilean invariance of the underlying fluid dynamics. In order to obtain the correct result we must retain O(vs2)O(v_s^2) terms in the sound-wave equation, and this reinforces the interpretation, due to Volovik, of the Iordanskii force as an analogue of the gravitational Bohm-Aharonov effect.Comment: 20 pages, LaTe

    Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions

    Full text link
    Tunneling conductance spectra between a normal metal / d-wave superconductor junction under the presence of bulk impurities in the superconductor are studied. The quasiclassical theory has been applied to calculate the spatial variation of the pair potential and the effect of impurity scattering has been introduced by t-matrix approximation. The magnitude of a subdominant s-wave component at the interface is shown to robust against the impurity scattering while that for a subdominant dxyd_{xy}-wave component is largely suppressed with the increase of the impurity scattering rate. The zero-bias conductance peak due to the zero-energy Andreev bound states is significantly broadened for the case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors

    Distribution functions in nonequilibrium theory of superconductivity and Andreev spectroscopy in unconventional superconductors

    Get PDF
    We develop a theoretical formulation of nonequilibrium superconducting phenomena, including singlet and triplet pairing, which is especially well suited for spatially inhomogeneous problems. We start from the general Keldysh-Nambu-Gor' kov Green's functions in the quasiclassical approximation and represent them in terms of 2x2 spin-matrix coherence functions and distribution functions for particle-type and hole-type excitations. The resulting transport equations for the distribution functions may be interpreted as a generalization to the superconducting state of Landau's transport equation for the normal Fermi liquid of conduction electrons. The equations are well suited for numerical simulations of dynamical phenomena. rising our formulation we solve an open problem in quasiclassical theory of superconductivity, the derivation of an explicit representation of Zaitsev's nonlinear boundary conditions (A. V. Zaitsev, Zh. Eksp. Teor. Fiz. 86, 1742 (1984) [Sov. Phys. JETP 59, 1015 (1984)]; A. L. Shelankov, Fiz. Tverd. Tela (Leningrad) 26, 1615 (1984) [Sov. Phys. Solid State 26, 981 (1984)]) at surfaces and interfaces. These boundary conditions include nonequilibrium phenomena and spin singlet and triplet unconventional pairing. We eliminate spurious solutions as well as numerical stability problems present in the original formulation. Finally, we formulate the Andreev scattering problem at interfaces in terms of the introduced distribution functions and present a theoretical analysis for the study of time reversal symmetry breaking states in unconventional superconductors via Andreev spectroscopy experiments at nomal-metal-superconductor interfaces with finite transmission. We include impurity scattering self-consistently

    Local anharmonic vibrations strong correlations and superconductivity: A quantum simulation study

    No full text
    We investigate the importance of local anharmonic vibrations of the bridging oxygen in the copper oxide high-T c materials in the context of superconductivity. For the numerical simulation we employ the projector quantum Monte Carlo method to study the ground state properties of the coupled electron-phonon system. The quantum Monte Carlo simulation allows an accurate treatment of electronic interactions which investigates the influence of strong correlations on superconductivity mediated by additional quantum degrees of freedom. As a generic model for such a system, we study the two-dimensional single band Hubbard model coupled to local pseudo spins (bridging oxygen), which mediate an effective attractive electron-electron interaction leading to superconductivity. The results are compared to those of an effective negativeU model
    corecore