302 research outputs found

    Spin Coulomb drag in the two-dimensional electron liquid

    Get PDF
    We calculate the spin-drag transresistivity ρ(T)\rho_{\uparrow \downarrow}(T) in a two-dimensional electron gas at temperature TT in the random phase approximation. In the low-temperature regime we show that, at variance with the three-dimensional low-temperature result [ρ(T)T2\rho_{\uparrow\downarrow}(T) \sim T^2], the spin transresistivity of a two-dimensional {\it spin unpolarized} electron gas has the form ρ(T)T2lnT\rho_{\uparrow\downarrow}(T) \sim T^2 \ln T. In the spin-polarized case the familiar form ρ(T)=AT2\rho_{\uparrow\downarrow}(T) =A T^2 is recovered, but the constant of proportionality AA diverges logarithmically as the spin-polarization tends to zero. In the high-temperature regime we obtain ρ(T)=(/e2)(π2Ry/kBT)\rho_{\uparrow \downarrow}(T) = -(\hbar / e^2) (\pi^2 Ry^* /k_B T) (where RyRy^* is the effective Rydberg energy) {\it independent} of the density. Again, this differs from the three-dimensional result, which has a logarithmic dependence on the density. Two important differences between the spin-drag transresistivity and the ordinary Coulomb drag transresistivity are pointed out: (i) The lnT\ln T singularity at low temperature is smaller, in the Coulomb drag case, by a factor e4kFde^{-4 k_Fd} where kFk_F is the Fermi wave vector and dd is the separation between the layers. (ii) The collective mode contribution to the spin-drag transresistivity is negligible at all temperatures. Moreover the spin drag effect is, for comparable parameters, larger than the ordinary Coulomb drag effect.Comment: 6 figures; various changes; version accepted for publicatio

    Nondissipative Drag Conductance as a Topological Quantum Number

    Full text link
    We show in this paper that the boundary condition averaged nondissipative drag conductance of two coupled mesoscopic rings with no tunneling, evaluated in a particular many-particle eigenstate, is a topological invariant characterized by a Chern integer. Physical implications of this observation are discussed.Comment: 4 pages, no figure. Title modified and significant revision made to the text. Final version appeared in PR

    Four-Wave mixing in degenerate Fermi gases: Beyond the undepleted pump approximation

    Full text link
    We analyze the full nonlinear dynamics of the four-wave mixing between an incident beam of fermions and a fermionic density grating. We find that when the number of atoms in the beam is comparable to the number of atoms forming the grating, the dephasing of that grating, which normally leads to a decay of its amplitude, is suppressed. Instead, the density grating and the beam density exhibit large nonlinear coupled amplitude oscillations. In this case four-wave mixing can persist for much longer times compared to the case of negligible back-action. We also evaluate the efficiency of the four-wave mixing and show that it can be enhanced by producing an initial density grating with an amplitude that is less than the maximum value. These results indicate that efficient four-wave mixing in fermionic alkali gases should be experimentally observable.Comment: 9 pages, 8 figure

    Temperature Dependence of Hall Response in Doped Antiferromagnets

    Full text link
    Using finite-temperature Lanczos method the frequency-dependent Hall response is calculated numerically for the t-J model on the square lattice and on ladders. At low doping, both the high-frequency RH* and the d.c. Hall coefficient RH0 follow qualitatively similar behavior at higher temperatures: being hole-like for T > Ts~1.5J and weakly electron-like for T < Ts. Consistent with experiments on cuprates, RH0 changes, in contrast to RH*, again to the hole-like sign below the pseudogap temperature T*, revealing a strong temperature variation for T->0.Comment: LaTeX, 4 pages, 4 figures, submitted to PR

    Dynamics of Fermionic Four-Wave Mixing

    Full text link
    We study the dynamics of a beam of fermions diffracted off a density grating formed by fermionic atoms in the limit of a large grating. An exact description of the system in terms of particle-hole operators is developed. We use a combination of analytical and numerical methods to quantitatively explore the Raman-Nath and the Bragg regimes of diffraction. We discuss the limits in diffraction efficiency resulting from the dephasing of the grating due the distribution of energy states occupied by the fermions. We propose several methods to overcome these limits, including the novel technique of ``atom echoes''.Comment: 8 pages, 7 figure

    Quasiparticles and c-axis coherent hopping in high T_c superconductors

    Full text link
    We study the problem of the low-energy quasiparticle spectrum of the extended t-J model and analyze the coherent hopping between weakly coupled planes described by this model. Starting with a two-band model describing the Cu-O planes and the unoccupied bands associated to the metallic atoms located in between the planes, we obtain effective hopping matrix elements describing the c-axis charge transfer. A computational study of these processes shows an anomalously large charge anisotropy for doping concentrations around and below the optimal doping.Comment: 4 pages, 3 figure

    Mesoscopic fluctuations of Coulomb drag between quasi-ballistic 1D-wires

    Get PDF
    Quasiballistic 1D quantum wires are known to have a conductance of the order of 2e^2/h, with small sample-to-sample fluctuations. We present a study of the transconductance G_12 of two Coulomb-coupled quasiballistic wires, i.e., we consider the Coulomb drag geometry. We show that the fluctuations in G_12 differ dramatically from those of the diagonal conductance G_ii: the fluctuations are large, and can even exceed the mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical simulations elucidating the fluctuations, both for correlated and uncorrelated disorder. We also present analytic arguments, which fully account for the trends observed numerically.Comment: 10 pages including 7 figures. Minor changes according to referee report. Accepted for PR

    Interference of a Tonks-Girardeau Gas on a Ring

    Full text link
    We study the quantum dynamics of a one-dimensional gas of impenetrable bosons on a ring, and investigate the interference that results when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Large visibility interference fringes arise when the wavevector of the optical dipole grating is larger than the effective Fermi wavevector of the initial gas.Comment: 7 pages, 3 figure

    Spin effects in the magneto-drag between double quantum wells

    Full text link
    We report on the selectivity to spin in a drag measurement. This selectivity to spin causes deep minima in the magneto-drag at odd fillingfactors for matched electron densities at magnetic fields and temperatures at which the bare spin energy is only one tenth of the temperature. For mismatched densities the selectivity causes a novel 1/B-periodic oscillation, such that negative minima in the drag are observed whenever the majority spins at the Fermi energies of the two-dimensional electron gasses (2DEGs) are anti-parallel, and positive maxima whenever the majority spins at the Fermi energies are parallel.Comment: 4 pages, 3 figure

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include
    corecore