22,293 research outputs found
Quantum Fidelity Decay of Quasi-Integrable Systems
We show, via numerical simulations, that the fidelity decay behavior of
quasi-integrable systems is strongly dependent on the location of the initial
coherent state with respect to the underlying classical phase space. In
parallel to classical fidelity, the quantum fidelity generally exhibits
Gaussian decay when the perturbation affects the frequency of periodic phase
space orbits and power-law decay when the perturbation changes the shape of the
orbits. For both behaviors the decay rate also depends on initial state
location. The spectrum of the initial states in the eigenbasis of the system
reflects the different fidelity decay behaviors. In addition, states with
initial Gaussian decay exhibit a stage of exponential decay for strong
perturbations. This elicits a surprising phenomenon: a strong perturbation can
induce a higher fidelity than a weak perturbation of the same type.Comment: 11 pages, 11 figures, to be published Phys. Rev.
Rigidity around Poisson Submanifolds
We prove a rigidity theorem in Poisson geometry around compact Poisson
submanifolds, using the Nash-Moser fast convergence method. In the case of
one-point submanifolds (fixed points), this immediately implies a stronger
version of Conn's linearization theorem, also proving that Conn's theorem is,
indeed, just a manifestation of a rigidity phenomenon; similarly, in the case
of arbitrary symplectic leaves, it gives a stronger version of the local normal
form theorem; another interesting case corresponds to spheres inside duals of
compact semisimple Lie algebras, our result can be used to fully compute the
resulting Poisson moduli space.Comment: 43 pages, v3: published versio
Symplectic Microgeometry II: Generating functions
We adapt the notion of generating functions for lagrangian submanifolds to
symplectic microgeometry. We show that a symplectic micromorphism always admits
a global generating function. As an application, we describe hamiltonian flows
as special symplectic micromorphisms whose local generating functions are the
solutions of Hamilton-Jacobi equations. We obtain a purely categorical
formulation of the temporal evolution in classical mechanics.Comment: 27 pages, 1 figur
Resonances, Radiation Damping and Instability in Hamiltonian Nonlinear Wave Equations
We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian
and are perturbations of linear dispersive equations. The unperturbed dynamical
system has a bound state, a spatially localized and time periodic solution. We
show that, for generic nonlinear Hamiltonian perturbations, all small amplitude
solutions decay to zero as time tends to infinity at an anomalously slow rate.
In particular, spatially localized and time-periodic solutions of the linear
problem are destroyed by generic nonlinear Hamiltonian perturbations via slow
radiation of energy to infinity. These solutions can therefore be thought of as
metastable states.
The main mechanism is a nonlinear resonant interaction of bound states
(eigenfunctions) and radiation (continuous spectral modes), leading to energy
transfer from the discrete to continuum modes.
This is in contrast to the KAM theory in which appropriate nonresonance
conditions imply the persistence of invariant tori. A hypothesis ensuring that
such a resonance takes place is a nonlinear analogue of the Fermi golden rule,
arising in the theory of resonances in quantum mechanics. The techniques used
involve: (i) a time-dependent method developed by the authors for the treatment
of the quantum resonance problem and perturbations of embedded eigenvalues,
(ii) a generalization of the Hamiltonian normal form appropriate for infinite
dimensional dispersive systems and (iii) ideas from scattering theory. The
arguments are quite general and we expect them to apply to a large class of
systems which can be viewed as the interaction of finite dimensional and
infinite dimensional dispersive dynamical systems, or as a system of particles
coupled to a field.Comment: To appear in Inventiones Mathematica
Time Dependent Resonance Theory
An important class of resonance problems involves the study of perturbations
of systems having embedded eigenvalues in their continuous spectrum. Problems
with this mathematical structure arise in the study of many physical systems,
e.g. the coupling of an atom or molecule to a photon-radiation field, and Auger
states of the helium atom, as well as in spectral geometry and number theory.
We present a dynamic (time-dependent) theory of such quantum resonances. The
key hypotheses are (i) a resonance condition which holds generically
(non-vanishing of the {\it Fermi golden rule}) and (ii) local decay estimates
for the unperturbed dynamics with initial data consisting of continuum modes
associated with an interval containing the embedded eigenvalue of the
unperturbed Hamiltonian. No assumption of dilation analyticity of the potential
is made. Our method explicitly demonstrates the flow of energy from the
resonant discrete mode to continuum modes due to their coupling. The approach
is also applicable to nonautonomous linear problems and to nonlinear problems.
We derive the time behavior of the resonant states for intermediate and long
times. Examples and applications are presented. Among them is a proof of the
instability of an embedded eigenvalue at a threshold energy under suitable
hypotheses.Comment: to appear in Geometrical and Functional Analysi
Nonautonomous Hamiltonians
We present a theory of resonances for a class of non-autonomous Hamiltonians
to treat the structural instability of spatially localized and time-periodic
solutions associated with an unperturbed autonomous Hamiltonian.
The mechanism of instability is radiative decay, due to resonant coupling of
the discrete modes to the continuum modes by the time-dependent perturbation.
This results in a slow transfer of energy from the discrete modes to the
continuum. The rate of decay of solutions is slow and hence the decaying bound
states can be viewed as metastable. The ideas are closely related to the
authors' work on (i) a time dependent approach to the instability of
eigenvalues embedded in the continuous spectra, and (ii) resonances, radiation
damping and instability in Hamiltonian nonlinear wave equations. The theory is
applied to a general class of Schr\"odinger equations. The phenomenon of
ionization may be viewed as a resonance problem of the type we consider and we
apply our theory to find the rate of ionization, spectral line shift and local
decay estimates for such Hamiltonians.Comment: To appear in Journal of Statistical Physic
Equilibrium Configuration of Black Holes and the Inverse Scattering Method
The inverse scattering method is applied to the investigation of the
equilibrium configuration of black holes. A study of the boundary problem
corresponding to this configuration shows that any axially symmetric,
stationary solution of the Einstein equations with disconnected event horizon
must belong to the class of Belinskii-Zakharov solutions. Relationships between
the angular momenta and angular velocities of black holes are derived.Comment: LaTeX, 14 pages, no figure
- …