8,767 research outputs found

    CCOs and the hidden magnetic field scenario

    Get PDF
    CCOs are X-ray sources lying close the center of supernova remnants, with inferred values of the surface magnetic fields significantly lower (less than about 1e11 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and reemergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 1e-4-1e-3 solar masses over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field reemerges on a typical timescale of 1-100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as alternative to the anti-magnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.Comment: 7 pages, 7 figures, MNRA

    Is there life beyond the ISI journals lists? the international impact of Spanish, Italian, French and German economics journals

    Get PDF
    This comparative study looks at the international impact of leading economics journals published in Spain, Italy, France and Germany. It also aims to establish whether they play a similar role in any of these 4 countries. For this purpose data were collected on the number of times that articles published in these journals are cited in international journals on the ISI Journals lists. The study focused on the number and characteristics of the citations received during the period 1996-2004 by articles published between 1995 and 1999 in a limited number of Spanish, Italian, French and German journals. The international impact of the Spanish journals was found to be similar in size and characteristics to that of the Italian publications. However, it differed sharply from the impact of the highest-ranking French and German journals. These last received a higher volume of citations, some of which also showed very different qualitative characteristics

    Non-radial oscillation modes as a probe of density discontinuities in neutron stars

    Get PDF
    A phase transition occurring in the inner core of a neutron star could be associated to a density discontinuity that would affect the frequency spectrum of the non-radial oscillation modes in two ways. Firstly, it would produce a softening of the equation of state, leading to more compact equilibrium configurations and changing the frequency of the fundamental and pressure modes of the neutron star. Secondly, a new non-zero frequency g-- mode would appear, associated to each discontinuity. These discontinuity g--modes have typical frequencies larger than those of g--modes previously studied in the literature (thermal, core g-- modes, or g--modes due to chemical inhomogeneities in the outer layers), and smaller than that of the fundamental mode; therefore they should be distinguishable from the other modes of non radial oscillation. In this paper we investigate how high density discontinuities change the frequency spectrum of the non-radial oscillations, in the framework of the general relativistic theory of stellar perturbations. Our purpose is to understand whether a gravitational signal, emitted at the frequencies of the quasi normal modes, may give some clear information on the equation of state of the neutron star and, in particular, on the parameters that characterize the density discontinuity. We discuss some astrophysical processes that may be associated to the excitation of these modes, and estimate how much gravitational energy should the modes convey to produce a signal detectable by high frequency gravitational detectors.Comment: submitted to MNRA

    Hyperbolic character of the angular moment equations of radiative transfer and numerical methods

    Get PDF
    We study the mathematical character of the angular moment equations of radiative transfer in spherical symmetry and conclude that the system is hyperbolic for general forms of the closure relation found in the literature. Hyperbolicity and causality preservation lead to mathematical conditions allowing to establish a useful characterization of the closure relations. We apply numerical methods specifically designed to solve hyperbolic systems of conservation laws (the so-called Godunov-type methods), to calculate numerical solutions of the radiation transport equations in a static background. The feasibility of the method in any kind of regime, from diffusion to free-streaming, is demonstrated by a number of numerical tests and the effect of the choice of the closure relation on the results is discussed.Comment: 37 pags, 12 figures, accepted for publication in MNRA

    Unstable g-modes in Proto-Neutron Stars

    Full text link
    In this article we study the possibility that, due to non-linear couplings, unstable g-modes associated to convective motions excite stable oscillating g-modes. This problem is of particular interest, since gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.Comment: 10 pages, 3 figures, to appear on Class. Quant. Gra

    Legendre expansion of the neutrino-antineutrino annihilation kernel: Influence of high order terms

    Full text link
    We calculate the Legendre expansion of the rate of the process Îœ+Μˉ↔e++e−\nu + \bar{\nu} \leftrightarrow e^+ + e^- up to 3rd order extending previous results of other authors which only consider the 0th and 1st order terms. Using different closure relations for the moment equations of the radiative transfer equation we discuss the physical implications of taking into account quadratic and cubic terms on the energy deposition outside the neutrinosphere in a simplified model. The main conclusion is that 2nd order is necessary in the semi-transparent region and gives good results if an appropriate closure relation is used.Comment: 14 pages, 4 figures. To be published in A&A Supplement Serie

    The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics

    Get PDF
    We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. The dependence of the solution on the tangential velocities is analysed, and the impact of this result on the development of multidimensional relativistic hydrodynamic codes (of Godunov type) is discussed.Comment: 26 pages, 4 figures. Accepted for publication in Journal of Fluid Mechanic
    • 

    corecore