759 research outputs found

    Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions

    Get PDF
    The Trojan Horse method is a powerful indirect technique that provides information to determine astrophysical factors for binary rearrangement processes x+A→b+Bx + A \to b + B at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction a+A→y+b+Ba + A \to y+ b + B in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions based on the half-off-energy-shell R matrix approach which takes into account the off-energy-shell effects and initial and final state interactions.Comment: 6 pages and 1 figur

    Solving the large discrepancy between inclusive and exclusive measurements of the 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at astrophysical energies

    Full text link
    A solution of the large discrepancy existing between inclusive and exclusive measurements of the 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at Ecm<3E_{cm} <3 MeV is evaluated. This problem has profound astrophysical relevance for this reaction is of great interest in Big-Bang and r-process nucleosynthesis. By means of a novel technique, a comprehensive study of all existing 8Li+4He→11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n cross section data is carried out, setting up a consistent picture in which all the inclusive measurements provide the reliable value of the cross section. New unambiguous signatures of the strong branch pattern non-uniformities, near the threshold of higher 11B{}^{11}{\rm B} excited levels, are presented and their possible origin, in terms of the cluster structure of the involved excited states of 11B{}^{11}{\rm B} and 12B{}^{12}{\rm B} nuclei, is discussed.Comment: 5 pages, 4 figures, 1 tabl

    Reply: Chest wall reconstruction with the perforator-plus thoracoabdominal flap

    Get PDF

    Fusion rate enhancement due to energy spread of colliding nuclei

    Full text link
    Experimental results for sub-barrier nuclear fusion reactions show cross section enhancements with respect to bare nuclei which are generally larger than those expected according to electron screening calculations. We point out that energy spread of target or projectile nuclei is a mechanism which generally provides fusion enhancement. We present a general formula for calculating the enhancement factor and we provide quantitative estimate for effects due to thermal motion, vibrations inside atomic, molecular or crystal system, and due to finite beam energy width. All these effects are marginal at the energies which are presently measurable, however they have to be considered in future experiments at still lower energies. This study allows to exclude several effects as possible explanation of the observed anomalous fusion enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl

    Radiation correction to astrophysical fusion reactions and the electron screening problem

    Get PDF
    We discuss the effect of electromagnetic environment on laboratory measurements of the nuclear fusion reactions of astrophysical interest. The radiation field is eliminated using the path integral formalism in order to obtain the influence functional, which we evaluate in the semi-classical approximation. We show that enhancement of the tunneling probability due to the radiation correction is extremely small and does not resolve the longstanding problem that the observed electron screening effect is significantly larger than theoretical predictions.Comment: 9 pages, 1 eps figure

    Halo effects on fusion cross section in 4,6He+64Zn collision around and below the Coulomb barrier

    Get PDF
    The structure of the halo nuclei is expected to influence the fusion mechanism at energies around and below the Coulomb barrier. Here new data of 4He+64Zn at sub-barrier energies are presented which cover the same energy region of previous measurements of 6He+64Zn. The fusion cross section was measured by using an activation technique where the radioactive evaporation residues produced in the reaction were identified by the X-ray emission which follows their electron capture decay. By comparing the two system, we observe an enhancement on the fusion cross section in the reaction induced by 6He, at energy below the Coulomb barrier. It is shown that this enhancement seems to be due to static properties of halo 2n 6He nucleus

    Experimental setup and procedure for the measurement of the 7Be(n,α)α reaction at n_TOF

    Get PDF
    The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the 7Be(n,α)α reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be γ-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.European Atomic Energy Community (Euratom) Seventh Framework Programme FP7/2007-2011-UMO-2012/04/M/ST2/00700Croatian Science Foundation-HRZZ 168
    • 

    corecore