4,441 research outputs found

    e+ee^{+}e^{-} pairs from a nuclear transition signaling an elusive light neutral boson

    Full text link
    Electron-positron pairs have been observed in the 10.95-MeV 00+0^-\to0^+ decay in 16^{16}O. The branching ratio of the e+^+e^- pairs compared to the 3.84-MeV 02+0^-\to2^+ γ\gamma decay of the level is deduced to be 20(5)×10520(5)\times10^{-5}. This magnetic monopole (M0) transition cannot proceed by γ\gamma-ray decay and is, to first order, forbidden for internal pair creation. However, the transition may also proceed by the emission of a light neutral 00^{-} or 1+1^{+} boson. Indeed, we do observe a sharp peak in the e+ee^{+}e^{-} angular correlation with all the characteristics belonging to the intermediate emission of such a boson with an invariant mass of 8.5(5) MeV/c2^2. It may play a role in the current quest for light dark matter in the universe.Comment: 6 page

    Investigation of Pygmy Dipole Resonances in the Tin Region

    Full text link
    The evolution of the low-energy electromagnetic dipole response with the neutron excess is investigated along the Sn isotopic chain within an approach incorporating Hartree-Fock-Bogoljubov (HFB) and multi-phonon Quasiparticle-Phonon-Model (QPM) theory. General aspects of the relationship of nuclear skins and dipole sum rules are discussed. Neutron and proton transition densities serve to identify the Pygmy Dipole Resonance (PDR) as a generic mode of excitation. The PDR is distinct from the GDR by its own characteristic pattern given by a mixture of isoscalar and isovector components. Results for the 100^{100}Sn-132^{132}Sn isotopes and the several N=82 isotones are presented. In the heavy Sn-isotopes the PDR excitations are closely related to the thickness of the neutron skin. Approaching 100^{100}Sn a gradual change from a neutron to a proton skin is found and the character of the PDR is changed correspondingly. A delicate balance between Coulomb and strong interaction effects is found. The fragmentation of the PDR strength in 124^{124}Sn is investigated by multi-phonon calculations. Recent measurements of the dipole response in 130,132^{130,132}Sn are well reproduced.Comment: 41 pages, 10 figures, PR

    A Re-evaluation of Evidence for Light Neutral Bosons in Nuclear Emulsions

    Full text link
    Electron-positron pair-production data obtained by bombardment of emulsion detectors with either cosmic rays or projectiles with mass between one and 207 and kinetic energies between 18 GeV and 32 TeV have been re-analysed using a consistent and conservative model of the background from electromagnetic pair conversion. The combined data yield a spectrum of putative neutral bosons decaying to e+e- pairs, with masses between 3 and 20 MeV/c^2 and femtosecond lifetimes. The statistical significance against background for these "X-bosons" varies between 2 and 8 sigma. The cross-section for direct production of X-bosons increases slowly with projectile energy, remaining over 1,000 times smaller the the pion production cross-section.Comment: major revision with improved figures; accepted by Int J Mod Phys

    Transmission resonance spectroscopy in the third minimum of 232Pa

    Full text link
    The fission probability of 232Pa was measured as a function of the excitation energy in order to search for hyperdeformed (HD) transmission resonances using the (d,pf) transfer reaction on a radioactive 231Pa target. The experiment was performed at the Tandem accelerator of the Maier-Leibnitz Laboratory (MLL) at Garching using the 231Pa(d,pf) reaction at a bombarding energy of E=12 MeV and with an energy resolution of dE=5.5 keV. Two groups of transmission resonances have been observed at excitation energies of E=5.7 and 5.9 MeV. The fine structure of the resonance group at E=5.7 MeV could be interpreted as overlapping rotational bands with a rotational parameter characteristic to a HD nuclear shape. The fission barrier parameters of 232Pa have been determined by fitting TALYS 1.2 nuclear reaction code calculations to the overall structure of the fission probability. From the average level spacing of the J=4 states, the excitation energy of the ground state of the 3rd minimum has been deduced to be E(III)=5.05 MeV.Comment: 6 pages, 8 figure

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Get PDF
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) \rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state \rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure

    Signature of Shallow Potentials in Deep Sub-barrier Fusion Reactions

    Get PDF
    We extend a recent study that explained the steep falloff in the fusion cross section at energies far below the Coulomb barrier for the symmetric dinuclear system 64Ni+64Ni to another symmetric system, 58Ni+58Ni, and the asymmetric system 64Ni+100Mo. In this scheme the very sensitive dependence of the internal part of the nuclear potential on the nuclear equation of state determines a reduction of the classically allowed region for overlapping configurations and consequently a decrease in the fusion cross sections at bombarding energies far below the barrier. Within the coupled-channels method, including couplings to the low-lying 2+ and 3- states in both target and projectile as well as mutual and two-phonon excitations of these states, we calculate and compare with the experimental fusion cross sections, S-factors, and logarithmic derivatives for the above mentioned systems and find good agreement with the data even at the lowest energies. We predict, in particular, a distinct double peaking in the S-factor for the far subbarrier fusion of 58Ni+58Ni which should be tested experimentally.Comment: 34 pages, 10 figures, to appear in Phys. Rev.

    Neutron-skin thickness of 208^{208}Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    Full text link
    The 208^{208}Pb(pp,nγpˉn\gamma\bar p) 207^{207}Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its γ\gamma-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (ΔRpn\Delta R_{pn}). By comparing the theoretical results with the measured transition energy, the value of 0.190 ±\pm 0.028 fm has been determined for ΔRpn\Delta R_{pn} of 208^{208}Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7±0.6J=32.7 \pm 0.6 MeV) and the slope of the symmetry energy (L=49.7±4.4L=49.7 \pm 4.4 MeV), resulting in more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1205.232

    Exploring the multi-humped fission barrier of 238U via sub-barrier photofission

    Get PDF
    The photofission cross-section of 238U was measured at sub-barrier energies as a function of the gamma-ray energy using, for the first time, a monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The experiment was performed at the High Intensity gamma-ray Source (HIgS) facility at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution. Indications of transmission resonances have been observed at gamma-ray beam energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1 nuclear reaction code calculations to the experimental photofission cross section.Comment: 5 pages, 3 figure

    Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors

    Full text link
    The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and still need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic gamma-ray sources and in-beam reactions producing gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of gamma-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the LABRVD, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, voltage divider and applied voltage, some significant deviation from the ideally proportional response of the detector and some pulse shape deformation appear. In addition, crystal non-homogeneities and PMT gain drifts affect the (measured) energy resolution especially in case of high-energy gamma rays. We also measured the time resolution of detectors with different sizes (from 1x1 inches up to 3.5x8 inches), correlating the results with both the intrinsic properties of PMTs and GEANT simulations of the scintillation light collection process. The detector absolute full energy efficiency was measured and simulated up to gamma-rays of 30 Me
    corecore