30,060 research outputs found

    Multi-excitons in self-assembled InAs/GaAs quantum dots: A pseudopotential, many-body approach

    Full text link
    We use a many-body, atomistic empirical pseudopotential approach to predict the multi-exciton emission spectrum of a lens shaped InAs/GaAs self-assembled quantum dot. We discuss the effects of (i) The direct Coulomb energies, including the differences of electron and hole wavefunctions, (ii) the exchange Coulomb energies and (iii) correlation energies given by a configuration interaction calculation. Emission from the groundstate of the NN exciton system to the N−1N-1 exciton system involving e0→h0e_0\to h_0 and e1→h1e_1\to h_1 recombinations are discussed. A comparison with a simpler single-band, effective mass approach is presented

    A summary report on system effectiveness and optimization study

    Get PDF
    Report treats optimization and effectiveness separately. Report illustrates example of dynamic programming solution to system optimization. Computer algorithm has been developed to solve effectiveness problem and is included in report

    Anomalous enhancement of a penguin hadronic matrix element in B->K eta'

    Get PDF
    We estimate the density matrix element for the pi^0, eta and eta' production from the vacuum in the large-N_c limit. As a consequence, we find that the QCD axial anomaly leads to highly non-trivial corrections to the usual flavour SU(3) relations between B^0-> K^0 pi^0, B^0-> K^0 eta and B^0-> K^0 eta' decay amplitudes. These corrections may explain why the B-> K eta' branching ratio is about six times larger than the B-> K pi one.Comment: 5 pages, 1 figur

    Dielectric Response of Periodic Systems from Quantum Monte Carlo Calculations

    Full text link
    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward-walking. This approach has been validated for the case of an isolated hydrogen atom, and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.Comment: 5 page 2figure

    Shifts in hexapod diversification and what Haldane could have said

    Get PDF
    Data on species richness and taxon age are assembled for the extant hexapod orders (insects and their six-legged relatives). Coupled with estimates of phylogenetic relatedness, and simple statistical null models, these data are used to locate where, on the hexapod tree, significant changes in the rate of cladogenesis (speciation-minus-extinction rate) have occurred. Significant differences are found between many successive pairs of sister taxa near the base of the hexapod tree, all of which are attributable to a shift in diversification rate after the origin of the Neoptera (insects with wing flexion) and before the origin of the Holometabola (insects with complete metamorphosis). No other shifts are identifiable amongst supraordinal taxa. Whilst the Coleoptera have probably diversified faster than either of their putative sister lineages, they do not stand out relative to other closely related clades. These results suggest that any Creator had a fondness for a much more inclusive clade than the Coleoptera, definitely as large as the Eumetabola (Holometabola plus bugs and their relatives), and possibly as large as the entire Neoptera. Simultaneous, hence probable causative events are discussed, of which the origin of wing flexion has been the focus of much attention

    Comparison of two methods for describing the strain profiles in quantum dots

    Full text link
    The electronic structure of interfaces between lattice-mismatched semiconductor is sensitive to the strain. We compare two approaches for calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a finite difference problem) and atomistic elasticity (AE). While for small strain the two methods must agree, for the large strains that exist between lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the linearity regime of CE) there are discrepancies. We compare the strain profile obtained by both approaches (including the approximation of the correct C_2 symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic
    • …
    corecore