26,518 research outputs found
Aspects of Puff Field Theory
We describe some features of the recently constructed "Puff Field Theory,"
and present arguments in favor of it being a field theory decoupled from
gravity. We construct its supergravity dual and calculate the entropy of this
theory in the limit of large 't Hooft coupling. We also determine the leading
irrelevant operator that governs its deviation from N=4 super Yang-Mills
theory.Comment: 31 pages, 1 figur
Quantum-state comparison and discrimination
We investigate the performance of discrimination strategy in the comparison
task of known quantum states. In the discrimination strategy, one infers
whether or not two quantum systems are in the same state on the basis of the
outcomes of separate discrimination measurements on each system. In some cases
with more than two possible states, the optimal strategy in minimum-error
comparison is that one should infer the two systems are in different states
without any measurement, implying that the discrimination strategy performs
worse than the trivial "no-measurement" strategy. We present a sufficient
condition for this phenomenon to happen. For two pure states with equal prior
probabilities, we determine the optimal comparison success probability with an
error margin, which interpolates the minimum-error and unambiguous comparison.
We find that the discrimination strategy is not optimal except for the
minimum-error case.Comment: 8 pages, 1 figure, minor corrections made, final versio
Determinant of a new fermionic action on a lattice - (I)
We investigate, analytically and numerically, the fermion determinant of a
new action on a (1+1)-dimensional Euclidean lattice. In this formulation the
discrete chiral symmetry is preserved and the number of fermion components is a
half of that of Kogut-Susskind. In particular, we show that our fermion
determinant is real and positive for U(1) gauge group under specific
conditions, which correspond to gauge conditions on the infinite lattice. It is
also shown that the determinant is real and positive for SU(N) gauge group
without any condition.Comment: 12 pages, 7 figure
Stationary quantum Markov process for the Wigner function
As a stochastic model for quantum mechanics we present a stationary quantum
Markov process for the time evolution of the Wigner function on a lattice phase
space Z_N x Z_N with N odd. By introducing a phase factor extension to the
phase space, each particle can be treated independently. This is an improvement
on earlier methods that require the whole distribution function to determine
the evolution of a constituent particle. The process has branching and
vanishing points, though a finite time interval can be maintained between the
branchings. The procedure to perform a simulation using the process is
presented.Comment: 12 pages, no figures; replaced with version accepted for publication
in J. Phys. A, title changed, an example adde
Stringy Derivation of Nahm Construction of Monopoles
We derive the Nahm construction of monopoles from exact tachyon condensation
on unstable D-branes. The Dirac operator used in the Nahm construction is
identified with the tachyon profile in our D-brane approach, and we provide
physical interpretation of the procedures Nahm gave. Crucial is the
introduction of infinite number of brane-antibranes from which arbitrary
D-brane can be constrcuted, exhibitting a unified view of various D-branes. We
explicitly show the equivalence of the D3-brane boundary state with the
monopole profile and the D1-brane boundary state with the Nahm data as
transverse scalars.Comment: 18 pages, 4 eps figures, JHEP style, comments about low energy limits
added, references adde
Comments on D-branes on general group manifolds
We investigate D-branes with maximal symmetry on general group manifolds in
terms of boundary states and effective actions. We show that in large limit
boundary states with an suitable Wilson line form boundary states of the other
types of D-branes, extending the known fact in SU(2) case. We also show that
fluctuation mass spectrum around D-brane solutions of the effective action
agrees with that of boundary CFT in large limit.Comment: LaTeX, 14 pages, no figures v2:minor correction and reference added
v3:minor chang
Non-commutativity and Open Strings Dynamics in Melvin Universes
We compute the Moyal phase factor for open strings ending on D3-branes
wrapping a NSNS Melvin universe in a decoupling limit explicitly using world
sheet formalism in cylindrical coordinates.Comment: 12 pages, 1 figure, references adde
Possible evolutionary transition from rapidly rotating neutron stars to strange stars due to spin-down
We present a scenario of formation of strange stars due to spin-down of {\it
rapidly rotating} neutron stars left after supernova explosions . By assuming a
process where the total baryon mass is conserved but the angular momentum is
lost due to emission of gravitational waves and/or the magnetic braking, we
find that the transition from rapidly rotating neutron stars to slowly rotating
strange stars is possible; a large amount of energy could
be released. The liberated energy might become a new energy source for a
delayed explosion of supernova. Furthermore, our scenario suggests that the
supernova associated with gamma-ray bursts could become candidates for targets
in the future observation of gravitational waves.Comment: 11 pages, 3 figures, Received November 5, 200
- âŠ