14 research outputs found

    Coordinate Space HFB Calculations for the Zirconium Isotope Chain up to the Two-Neutron Dripline

    Full text link
    We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially symmetric even-even nuclei in coordinate space on a 2-D lattice utilizing the Basis-Spline expansion method. Results are presented for the neutron-rich zirconium isotopes up to the two-neutron dripline. In particular, we calculate binding energies, two-neutron separation energies, normal densities and pairing densities, mean square radii, quadrupole moments, and pairing gaps. Very large prolate quadrupole deformations (beta2=0.42,0.43,0.47) are found for the (102,104,112)Zr isotopes, in agreement with recent experimental data. We compare 2-D Basis-Spline lattice results with the results from a 2-D HFB code which uses a transformed harmonic oscillator basis.Comment: 9 pages, 9 figure

    Hartree-Fock-Bogoliubov Calculations in Coordinate Space: Neutron-Rich Sulfur, Zirconium, Cerium, and Samarium Isotopes

    Full text link
    Using the Hartree-Fock-Bogoliubov (HFB) mean field theory in coordinate space, we investigate ground state properties of the sulfur isotopes from the line of stability up to the two-neutron dripline (34Ôłĺ52S^{34-52}S). In particular, we calculate two-neutron separation energies, quadrupole moments, and rms-radii for protons and neutrons. Evidence for shape coexistence is found in the very neutron-rich sulfur isotopes. We compare our calculations with results from relativistic mean field theory and with available experimental data. We also study the properties of neutron-rich zirconium (102,104Zr^{102,104}Zr), cerium (152Ce^{152}Ce), and samarium (158,160Sm^{158,160}Sm) isotopes which exhibit very large prolate quadrupole deformations.Comment: 7 pages, 6 figures, 2 tables submitted to Phys. Rev.

    Dialysis-assisted fiber optic spectroscopy for in situ biomedical sensing

    Get PDF
    A miniature fiber optic spectrometer enclosed within a semipermeable (dialysis) membrane is proposed for in vivo interstitial sensing applications. The semipermeable membrane acts as a molecular filter, allowing only small molecules to pass through to the sampling volume. This filtering, in principle, should enable continuous in vivo drug sensing, removing the necessity for complex microdialysis systems. We use a biological phantom to examine the reliable detection of a fluorescence signal from small dye molecules in the presence of large fluorophores and scatterers. We find that spectral artefacts arising from scatterers and large fluorophores are substantially suppressed, simplifying the spectral analysis. In addition, the measured sampling rate of 157 s is superior to existing in vivo tissue assaying techniques such as microdialysis, which can take tens of minutes. (c) 2006 Society of Photo- Optical Instrumentation Engineers

    2-D lattice HFB calculations for neutron-rich zirconium isotopes

    No full text
    Using the Hartree-Fock-Bogoliubov (HFB) mean-field theory in coordinate space, we investigate ground-state properties of the zirconium isotopes from the line of stability up to the two-neutron dripline ( 102-122Zr). In particular, we calculate two-neutron separation energies, quadrupole moments, and r.m.s. radii for protons and neutrons. We find large prolate ground-state deformations for the isotopes 102Zr through 112Zr, and the spherical shapes starting from 114Zr up to the dripline nucleus 122Zr

    Image reconstruction in full-field Fourier-domain optical coherence tomography

    No full text
    Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term

    Optical scatter imaging using digital Fourier microscopy

    No full text
    An approach reported recently by Alexandrov et al (2005 Int. J Imag. Syst. Technol. 14 253-8) on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. The holographic mode of the recording of the sample optical scatter enables reconstruction of the sample image. The form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post-processing stage. As in dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present the theoretical and experimental study of DFM using a biological phantom that contains polymorphic scatterers