9,765 research outputs found

### Graded Hecke algebras for disconnected reductive groups

We introduce graded Hecke algebras H based on a (possibly disconnected)
complex reductive group G and a cuspidal local system L on a unipotent orbit of
a Levi subgroup M of G. These generalize the graded Hecke algebras defined and
investigated by Lusztig for connected G.
We develop the representation theory of the algebras H. obtaining complete
and canonical parametrizations of the irreducible, the irreducible tempered and
the discrete series representations. All the modules are constructed in terms
of perverse sheaves and equivariant homology, relying on work of Lusztig. The
parameters come directly from the data (G,M,L) and they are closely related to
Langlands parameters.
Our main motivation for considering these graded Hecke algebras is that the
space of irreducible H-representations is canonically in bijection with a
certain set of "logarithms" of enhanced L-parameters. Therefore we expect these
algebras to play a role in the local Langlands program. We will make their
relation with the local Langlands correspondence, which goes via affine Hecke
algebras, precise in a sequel to this paper.Comment: Theorem 3.4 and Proposition 3.22 in version 1 were not entirely
correct as stated. This is repaired in a new appendi

### Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite
magnetoelectric (ME) trilayer composites consisting of commercial PZT discs
bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark
Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode)
were measured on ferrite/PZT/ferrite trilayer ME samples with different
thicknesses or phase volume ratio in order to highlight the influence of the
magnetic field penetration governed by these geometrical parameters.
Experimental ME coefficients and voltages were compared to analytical
calculations using a quasi-static model. Theoretical demagnetizing factors of
two magnetic discs that interact together in parallel magnetic structures were
derived from an analytical calculation based on a superposition method. These
factors were introduced in ME voltage calculations which take account of the
demagnetizing effect. To fit the experimental results, a mechanical coupling
factor was also introduced in the theoretical formula. This reflects the
differential strain that exists in the ferrite and PZT layers due to shear
effects near the edge of the ME samples and within the bonding epoxy layers.
From this study, an optimization in magnitude of the ME voltage is obtained.
Lastly, an analytical calculation of demagnetizing effect was conducted for
layered ME composites containing higher numbers of alternated layers (). The
advantage of such a structure is then discussed

Recommended from our members

### Observation of B+ ---> a(1)+(1260) K0 and B0 ---> a(1)-(1260) K+

We present branching fraction measurements of the decays B^{+} -> a1(1260)^{+} K^{0} and B^{0} to a1(1260)^{-} K^{+} with a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}. The data sample corresponds to 383 million B B-bar pairs produced in e^{+}e^{-} annihilation through the Y(4S) resonance. We measure the products of the branching fractions:
B(B^{+}-> a1(1260)^{+} K^{0})B(a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}) = (17.4 +/- 2.5 +/- 2.2) 10^{-6}
B(B^{0}-> a1(1260)^{-} K^{+})B(a1(1260)^{-} -> pi^{+} pi^{-} pi^{-}) = (8.2 +/- 1.5 +/- 1.2) 10^{-6}.
We also measure the charge asymmetries A_{ch}(B^{+} -> a1(1260)^{+} K^{0})= 0.12 +/- 0.11 +/- 0.02 and A_{ch}(B^{0} -> a1(1260)^{-} K^{+})= -0.16 +/- 0.12 +/- 0.01. The first uncertainty quoted is statistical and the second is systematic

Recommended from our members

### Search for CP violation in the decays D0 ---> K- K+ and D0 ---> pi- pi+

We measure CP-violating asymmetries of neutral charmed mesons in the modes D0 --> K- K+ and D0 --> pi- pi+ with the highest precision to date by using D0 --> K- pi+ decays to correct detector asymmetries. An analysis of 385.8 fb-1 of data collected with the BaBar detector yields values of aCP(KK) = (0.00 +/- 0.34 (stat.) +/- 0.13 (syst.))% and aCP(pipi) = (-0.24 +/- 0.52 (stat.) +/- 0.22 (syst.))%, which agree with Standard Model prediction

Recommended from our members

### Observation of the semileptonic decays B ---> D* tau- anti-nu(tau) and evidence for B ---> D tau- anti-nu(tau

We present measurements of the semileptonic decays B- --> D0 tau- nubar, B- --> D*0 tau- nubar, B0bar --> D+ tau- nubar, and B0bar --> D*+ tau- nubar, which are potentially sensitive to non--Standard Model amplitudes. The data sample comprises 232x10^6 Upsilon(4S) --> BBbar decays collected with the BaBar detector. From a combined fit to B- and B0bar channels, we obtain the branching fractions B(B --> D tau- nubar) = (0.86 +/- 0.24 +/- 0.11 +/- 0.06)% and B(B --> D* tau- nubar) = (1.62 +/- 0.31 +/- 0.10 +/- 0.05)% (normalized for the B0bar), where the uncertainties are statistical, systematic, and normalization-mode-related

### Time Reversal Violation from the entangled B0-antiB0 system

We discuss the concepts and methodology to implement an experiment probing
directly Time Reversal (T) non-invariance, without any experimental connection
to CP violation, by the exchange of "in" and "out" states. The idea relies on
the B0-antiB0 entanglement and decay time information available at B factories.
The flavor or CP tag of the state of the still living neutral meson by the
first decay of its orthogonal partner overcomes the problem of irreversibility
for unstable systems, which prevents direct tests of T with incoherent particle
states. T violation in the time evolution between the two decays means
experimentally a difference between the intensities for the time-ordered (l^+
X, J/psi K_S) and (J/psi K_L, l^- X) decays, and three other independent
asymmetries. The proposed strategy has been applied to simulated data samples
of similar size and features to those currently available, from which we
estimate the significance of the expected discovery to reach many standard
deviations.Comment: 17 pages, 2 figures, 6 table

Recommended from our members

### Study of e+ e- ---> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 using initial state radiation with BABAR

We study the e+e- --> Lambda anti-Lambda gamma, Lambda anti-Sigma0 gamma, Sigma0 anti-Sigma0 gamma processes using 230 fb-1 of integrated luminosity collected by the BABAR detector at e+e- center-of-mass energy of 10.58 GeV.
From the analysis of the baryon-antibaryon mass spectra the cross sections for e+e- --> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 are measured in the dibaryon mass range from threshold up to 3 GeV/c^2. The ratio of electric and magnetic form factors, |G_E/G_M|, is measured for e+e- --> Lambda anti-Lambda, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi --> Lambda anti-Lambda, Sigma0 anti-Sigma0 and psi(2S) --> Lambda anti-Lambda branching fractions

### Radiative and Semileptonic B Decays Involving Higher K-Resonances in the Final States

We study the radiative and semileptonic B decays involving a spin-$J$
resonant $K_J^{(*)}$ with parity $(-1)^J$ for $K_J^*$ and $(-1)^{J+1}$ for
$K_J$ in the final state. Using the large energy effective theory (LEET)
techniques, we formulate $B \to K_J^{(*)}$ transition form factors in the large
recoil region in terms of two independent LEET functions
$\zeta_\perp^{K_J^{(*)}}$ and $\zeta_\parallel^{K_J^{(*)}}$, the values of
which at zero momentum transfer are estimated in the BSW model. According to
the QCD counting rules, $\zeta_{\perp,\parallel}^{K_J^{(*)}}$ exhibit a dipole
dependence in $q^2$. We predict the decay rates for $B \to K_J^{(*)} \gamma$,
$B \to K_J^{(*)} \ell^+ \ell^-$ and $B \to K_J^{(*)}\nu \bar{\nu}$. The
branching fractions for these decays with higher $K$-resonances in the final
state are suppressed due to the smaller phase spaces and the smaller values of
$\zeta^{K_J^{(*)}}_{\perp,\parallel}$. Furthermore, if the spin of $K_J^{(*)}$
becomes larger, the branching fractions will be further suppressed due to the
smaller Clebsch-Gordan coefficients defined by the polarization tensors of the
$K_J^{(*)}$. We also calculate the forward backward asymmetry of the $B \to
K_J^{(*)} \ell^+ \ell^-$ decay, for which the zero is highly insensitive to the
$K$-resonances in the LEET parametrization.Comment: 27 pages, 4 figures, 7 tables;contents and figures corrected, title
and references revise

Recommended from our members

### Measurements of Partial Branching Fractions for anti-B ---> X(u) l anti-nu and Determination of |V(ub)|

We present partial branching fractions for inclusive charmless semileptonic B decays Bbar --> X_u ell nubar, and the determination of the CKM matrix element |V_{ub}|. The analysis is based on a sample of 383 million Y(4S) decays into B Bbar pairs collected with the BaBar detector at the PEP-II e+ e- storage rings. We select events using either the invariant mass M_X of the hadronic system, the invariant mass squared, q^2, of the lepton and neutrino pair, the kinematic variable P_+ or one of their combinations. We then determine partial branching fractions in limited regions of phase space: Delta B = (1.18 +- 0.09_{stat.} +- 0.07_{sys.} +- 0.01_{theo.}) x 10^{-3} (M_X 8 GeV^2/c^4). Corresponding values of |V_{ub}| are extracted using several theoretical calculations

### An Improved Standard Model Prediction Of BR(B -> tau nu) And Its Implications For New Physics

The recently measured B -> tau nu branching ratio allows to test the Standard
Model by probing virtual effects of new heavy particles, such as a charged
Higgs boson. The accuracy of the test is currently limited by the experimental
error on BR(B -> tau nu) and by the uncertainty on the parameters fB and |Vub|.
The redundancy of the Unitarity Triangle fit allows to reduce the error on
these parameters and thus to perform a more precise test of the Standard Model.
Using the current experimental inputs, we obtain BR(B -> tau nu)_SM = (0.84 +-
0.11)x10^{-4}, to be compared with BR(B -> tau nu)_exp = (1.73 +-
0.34)x10^{-4}. The Standard Model prediction can be modified by New Physics
effects in the decay amplitude as well as in the Unitarity Triangle fit. We
discuss how to disentangle the two possible contributions in the case of
minimal flavour violation at large tan beta and generic loop-mediated New
Physics. We also consider two specific models with minimal flavour violation:
the Type-II Two Higgs Doublet Model and the Minimal Supersymmetric Standard
Model.Comment: 7 pages, 13 figures, 1 table. v2: added references and discussion of
B -> D tau nu in the 2HDM. v3: added Bs->mumu in the 2HDM. Final version to
appear in PL

- …