939 research outputs found

    Electroweak and Flavor Physics in Extensions of the Standard Model with Large Extra Dimensions

    Get PDF
    We study the implications of extra dimensions of size R∼1/TeVR\sim 1/TeV on electroweak and flavor physics due to the presence of Kaluza-Klein excitations of the SM gauge-bosons. We consider several scenarios with the SM fermions either living in the bulk or being localized at different points of an extra dimension. Global fits to electroweak observables provide lower bounds on 1/R, which are generically in the 2-5 TeV range. We find, however, certain models where the fit to electroweak observables is better than in the SM, because of an improvement in the prediction to the weak charge Q_W. We also consider the case of softly-broken supersymmetric theories and we find new non-decoupling effects that put new constraints on 1/R. If quarks of different families live in different points of the extra dimension, we find that the Kaluza-Klein modes of the SM gluons generate (at tree level) dangerous flavor and CP-violating interactions. The lower bounds on 1/R can increase in this case up to 5000 TeV, disfavoring these scenarios in the context of TeV-strings.Comment: 21 pages, 3 figures, Late

    The μ\mu-Problem in Theories with Gauge-Mediated Supersymmetry Breaking

    Full text link
    We point out that the μ\mu-problem in theories in which supersymmetry breaking is communicated to the observable sector by gauge interactions is more severe than the one encountered in the conventional gravity-mediated scenarios. The difficulty is that once μ\mu is generated by a one-loop diagram, then usually \bmu is also generated at the same loop order. This leads to the problematic relation \bmu \sim \mu \Lambda, where Λ∼\Lambda \sim 10--100 TeV is the effective supersymmetry-breaking scale. We present a class of theories for which this problem is naturally solved. Here, without any fine tuning among parameters, μ\mu is generated at one loop, while \bmu arises only at the two-loop level. This mechanism can naturally lead to an interpretation of the Higgs doublets as pseudo-Goldstone bosons of an approximate global symmetry.Comment: 18 pages, 2 figure

    One-loop non-renormalization results in EFTs

    Full text link
    In Effective Field Theories (EFTs) with higher-dimensional operators many anomalous dimensions vanish at the one-loop level for no apparent reason. With the use of supersymmetry, and a classification of the operators according to their embedding in super-operators, we are able to show why many of these anomalous dimensions are zero. The key observation is that one-loop contributions from superpartners trivially vanish in many cases under consideration, making supersymmetry a powerful tool even for non-supersymmetric models. We show this in detail in a simple U(1) model with a scalar and fermions, and explain how to extend this to SM EFTs and the QCD Chiral Langrangian. This provides an understanding of why most "current-current" operators do not renormalize "loop" operators at the one-loop level, and allows to find the few exceptions to this ubiquitous rule.Comment: Corrections made in Sec. 3.2 and Fig.

    The Strongly-Interacting Light Higgs

    Get PDF
    We develop a simple description of models where electroweak symmetry breaking is triggered by a light composite Higgs, which emerges from a strongly-interacting sector as a pseudo-Goldstone boson. Two parameters broadly characterize these models: m_rho, the mass scale of the new resonances and g_rho, their coupling. An effective low-energy Lagrangian approach proves to be useful for LHC and ILC phenomenology below the scale m_rho. We identify two classes of operators: those that are genuinely sensitive to the new strong force and those that are sensitive to the spectrum of the resonances only. Phenomenological prospects for the LHC and the ILC include the study of high-energy longitudinal vector boson scattering, strong double-Higgs production and anomalous Higgs couplings. We finally discuss the possibility that the top quark could also be a composite object of the strong sector.Comment: 45 pages, 1 figure. v2: references adde

    Higgs windows to new physics through d = 6 operators: Constraints and one-loop anomalous dimensions

    Full text link
    The leading contributions from heavy new physics to Higgs processes can be captured in a model-independent way by dimension-six operators in an effective Lagrangian approach. We present a complete analysis of how these contributions affect Higgs couplings. Under certain well-motivated assumptions, we find that 8 CP-even plus 3 CP-odd Wilson coefficients parametrize the main impact in Higgs physics, as all other coefficients are constrained by non-Higgs SM measurements. We calculate the most relevant anomalous dimensions for these Wilson coefficients, which describe operator mixing from the heavy scale down to the electroweak scale. This allows us to find the leading-log corrections to the predictions for the Higgs couplings in specific models, such as the MSSM or composite Higgs, which we find to be significant in certain cases.Comment: 45 pages. Some minor typos fixed. Matches published versio

    Vector Leptoquark Production at Hadron Colliders

    Full text link
    We explore the production of vector leptoquarks (VV) at the Tevatron, LHC, and SSC through both quark-antiquark and gluon fusion: qqˉ,gg→VVq \bar q, gg \to VV. The cross sections are found to be somewhat larger than for scalar leptoquarks of the same mass implying enhanced search capabilities. Contributed to the Workshop on Physics at Current Accelerators and the Supercollider, Argonne National Lab, June 1993.Comment: 8 pg (including 5 figures, available by request to hewett@anlhep), ANL-HEP-CP-93-52, UH-511-775-93, SCIPP-93/3

    Renormalization of dimension-six operators relevant for the Higgs decays h→γγ,γZh\rightarrow \gamma\gamma,\gamma Z

    Full text link
    The discovery of the Higgs boson has opened a new window to test the SM through the measurements of its couplings. Of particular interest is the measured Higgs coupling to photons which arises in the SM at the one-loop level, and can then be significantly affected by new physics. We calculate the one-loop renormalization of the dimension-six operators relevant for h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z, which can be potentially important since it could, in principle, give log-enhanced contributions from operator mixing. We find however that there is no mixing from any current-current operator that could lead to this log-enhanced effect. We show how the right choice of operator basis can make this calculation simple. We then conclude that h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z can only be affected by RG mixing from operators whose Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and structure of anomalous-dimension matrix determined further. Conclusions unchange

    Light Higgs Boson in the Spontaneously CP Violating NMSSM

    Get PDF
    We consider spontaneous CP violation in the Next to Minimal Supersymmetric Standard Model, without the usual Z3Z_3 discrete symmetry. CP violation can occur at tree level, raising a potential conflict with the experimental bounds on the electric dipole moments of the electron and neutron. One escape from this is to demand that the CP violating angles are small, but we find that this entails a light neutral Higgs particle. This is almost pseudoscalar, can have a high singlet content, and will be hard to detect experimentally.Comment: 14 page LaTeX fil
    • …
    corecore