2,058 research outputs found
Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration
We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr−1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr−1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (“lower N” simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (“lower N+D” simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr−1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases
Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America
We use the terrestrial ecosystem model (TEM), a process-based model, to investigate how interactions between carbon (C) and nitrogen (N) dynamics affect predictions of net primary productivity (NPP) for potential vegetation in North America. Data on pool sizes and fluxes of C and N from intensively studied field sites are used to calibrate the model for each of 17 non-wetland vegetation types. We use information on climate, soils, and vegetation to make estimates for each of 11,299 non-wetland, 0.5° latitude × 0.5° longitude, grid cells in North America. The potential annual NPP and net N mineralization (NETNMIN) of North America are estimated to be 7.032 × 1015 g C yr−1 and 104.6 × 1012 g N yr−1, respectively. Both NPP and NETNMIN increase along gradients of increasing temperature and moisture in northern and temperate regions of the continent, respectively. Nitrogen limitation of productivity is weak in tropical forests, increasingly stronger in temperate and boreal forests, and very strong in tundra ecosystems. The degree to which productivity is limited by the availability of N also varies within ecosystems. Thus spatial resolution in estimating exchanges of C between the atmosphere and the terrestrial biosphere is improved by modeling the linkage between C and N dynamics. We also perform a factorial experiment with TEM on temperate mixed forest in North America to evaluate the importance of considering interactions between C and N dynamics in the response of NPP to an elevated temperature of 2°C. With the C cycle uncoupled from the N cycle, NPP decreases primarily because of higher plant respiration. However, with the C and N cycles coupled, NPP increases because productivity that is due to increased N availability more than offsets the higher costs of plant respiration. Thus, to investigate how global change will affect biosphere-atmosphere interactions, process-based models need to consider linkages between the C and N cycles
Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas Fluxes from Future Land-use Chage
http://globalchange.mit.edu/research/publications/2240The production of cellulosic biofuels may have a large influence on future land emissions of
greenhouse gases. These effects will vary across space and time depending on land-use policies,
trade, and variations in environmental conditions. We link an economic model with a terrestrial
biogeochemistry model to explore how projections of cellulosic biofuels production may influence
future land emissions of carbon and nitrous oxide. Tropical regions, particularly Africa and Latin
America, are projected to become major producers of biofuels. Most biofuels production is projected
to occur on lands that would otherwise be used to produce crops, livestock and timber. Biofuels
production leads to displacement and a redistribution of global food and timber production along
with a reduction in the trade of food products. Overall, biofuels production and the displacement of
other managed lands increase emissions of greenhouse gases primarily as a result of carbon
emissions from deforestation and nitrous oxide emissions from fertilizer applications to maximize
biofuel crop production in tropical regions. With optimal application of nitrogen fertilizers, cellulosic
biofuels production may enhance carbon sequestration in soils of some regions. As a result, the
relative importance of carbon emissions versus nitrous oxide emissions varies among regions.
Reductions in carbon sequestration by natural ecosystems caused by the expansion of biofuels have
minor effects on the global greenhouse gas budget and are more than compensated by concurrent
biofuel-induced reductions in nitrous oxide emissions from natural ecosystems. Land policies that
avoid deforestation and fertilizer applications, particularly in tropical regions, will have the largest
impact on minimizing land emissions of greenhouse gas from cellulosic biofuels production.This research was supported in part by the David and Lucile Packard Foundation to the MBL,
Department of Energy, Office of Science (BER) grants DE-FG02-94ER61937, DE-FG02-
93ER61677, DE-FG02-08ER64648, EPA grant XA-83240101, NSF grant BCS-0410344, and
the industrial and foundation sponsors of the MIT Joint Program on the Science and Policy of
Global Change
Collective behaviour without collective order in wild swarms of midges
Collective behaviour is a widespread phenomenon in biology, cutting through a
huge span of scales, from cell colonies up to bird flocks and fish schools. The
most prominent trait of collective behaviour is the emergence of global order:
individuals synchronize their states, giving the stunning impression that the
group behaves as one. In many biological systems, though, it is unclear whether
global order is present. A paradigmatic case is that of insect swarms, whose
erratic movements seem to suggest that group formation is a mere epiphenomenon
of the independent interaction of each individual with an external landmark. In
these cases, whether or not the group behaves truly collectively is debated.
Here, we experimentally study swarms of midges in the field and measure how
much the change of direction of one midge affects that of other individuals. We
discover that, despite the lack of collective order, swarms display very strong
correlations, totally incompatible with models of noninteracting particles. We
find that correlation increases sharply with the swarm's density, indicating
that the interaction between midges is based on a metric perception mechanism.
By means of numerical simulations we demonstrate that such growing correlation
is typical of a system close to an ordering transition. Our findings suggest
that correlation, rather than order, is the true hallmark of collective
behaviour in biological systems.Comment: The original version has been split into two parts. This first part
focuses on order vs. correlation. The second part, about finite-size scaling,
will be included in a separate paper. 15 pages, 6 figures, 1 table, 5 video
Finite-size scaling as a way to probe near-criticality in natural swarms
Collective behaviour in biological systems is often accompanied by strong
correlations. The question has therefore arisen of whether correlation is
amplified by the vicinity to some critical point in the parameters space.
Biological systems, though, are typically quite far from the thermodynamic
limit, so that the value of the control parameter at which correlation and
susceptibility peak depend on size. Hence, a system would need to readjust its
control parameter according to its size in order to be maximally correlated.
This readjustment, though, has never been observed experimentally. By gathering
three-dimensional data on swarms of midges in the field we find that swarms
tune their control parameter and size so as to maintain a scaling behaviour of
the correlation function. As a consequence, correlation length and
susceptibility scale with the system's size and swarms exhibit a near-maximal
degree of correlation at all sizes.Comment: Selected for Viewpoint in Physics; PRL Editor's Suggestio
The use of classification and regression tree to predict 15-year survival in community-dwelling older people
Previous research has identified various risk factors for mortality in older people. The aim of this paper was to use Classification and Regression Tree to predict 15-year survival in community-dwelling older people. Data were obtained from a United Kingdom representative sample of 1042 community-dwelling people aged 65 and over. Outcome was time from 1985 interview to death or censorship on February 29, 2000. Classification and Regression Tree is a non-parametric technique widely used in medical domain classification. We applied CART to the set of risk-factors identified in a previous research. The selected CART model is based on age, dose of drug prescribed and handgrip measures. It predicts survival with a sensitivity rate of 76.3% and a specificity rate of 66.3%. The selection of variables are consistent with previous research. Finally, we observed the range of risk factors and their combination associated with increased and decreased mortality
The AMSC mobile satellite system
The American Mobile Satellite Consortium (AMSC) Mobile Satellite Service (MSS) system is described. AMSC will use three multi-beam satellites to provide L-band MSS coverage to the United States, Canada and Mexico. The AMSC MSS system will have several noteworthy features, including a priority assignment processor that will ensure preemptive access to emergency services, a flexible SCPC channel scheme that will support a wide diversity of services, enlarged system capacity through frequency and orbit reuse, and high effective satellite transmitted power. Each AMSC satellite will make use of 14 MHz (bi-directional) of L-band spectrum. The Ku-band will be used for feeder links
Mobile satellite service in the United States
Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations
Potential net primary productivity in South America: application of a global model
We use a mechanistically based ecosystem simulation model to describe and analyze the spatial and temporal patterns of terrestrial net primary productivity (NPP) in South America. The Terrestrial Ecosystem Model (TEM) is designed to predict major carbon and nitrogen fluxes and pool sizes in terrestrial ecosystems at continental to global scales. Information from intensively studies field sites is used in combination with continental—scale information on climate, soils, and vegetation to estimate NPP in each of 5888 non—wetland, 0.5° latitude °0.5° longitude grid cells in South America, at monthly time steps. Preliminary analyses are presented for the scenario of natural vegetation throughout the continent, as a prelude to evaluating human impacts on terrestrial NPP. The potential annual NPP of South America is estimated to be 12.5 Pg/yr of carbon (26.3 Pg/yr of organic matter) in a non—wetland area of 17.0 ° 106 km2. More than 50% of this production occurs in the tropical and subtropical evergreen forest region. Six independent model runs, each based on an independently derived set of model parameters, generated mean annual NPP estimates for the tropical evergreen forest region ranging from 900 to 1510 g°m—2°yr—1 of carbon, with an overall mean of 1170 g°m—2°yr—1. Coefficients of variation in estimated annual NPP averaged 20% for any specific location in the evergreen forests, which is probably within the confidence limits of extant NPP measurements. Predicted rates of mean annual NPP in other types of vegetation ranged from 95 g°m—2°yr—1 in arid shrublands to 930 g°m@?yr—1 in savannas, and were within the ranges measured in empirical studies. The spatial distribution of predicted NPP was directly compared with estimates made using the Miami mode of Lieth (1975). Overall, TEM predictions were °10% lower than those of the Miami model, but the two models agreed closely on the spatial patterns of NPP in south America. Unlike previous models, however, TEM estimates NPP monthly, allowing for the evaluation of seasonal phenomena. This is an important step toward integration of ecosystem models with remotely sensed information, global climate models, and atmospheric transport models, all of which are evaluated at comparable spatial and temporal scales. Seasonal patterns of NPP in South America are correlated with moisture availability in most vegetation types, but are strongly influenced by seasonal differences in cloudiness in the tropical evergreen forests. On an annual basis, moisture availability was the factor that was correlated most strongly with annual NPP in South America, but differences were again observed among vegetation types. These results allow for the investigation and analysis of climatic controls over NPP at continental scales, within and among vegetation types, and within years. Further model validation is needed. Nevertheless, the ability to investigate NPP—environment interactions with a high spatial and temporal resolution at continental scales should prove useful if not essential for rigorous analysis of the potential effects of global climate changes on terrestrial ecosystems
Heart rate variability and target organ damage in hypertensive patients
Background:
We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD).
Methods:
A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index.
Results:
Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors.
Conclusions:
Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD
- …