60,559 research outputs found

    Audio-Visual Person Verification based on Recursive Fusion of Joint Cross-Attention

    Full text link
    Person or identity verification has been recently gaining a lot of attention using audio-visual fusion as faces and voices share close associations with each other. Conventional approaches based on audio-visual fusion rely on score-level or early feature-level fusion techniques. Though existing approaches showed improvement over unimodal systems, the potential of audio-visual fusion for person verification is not fully exploited. In this paper, we have investigated the prospect of effectively capturing both the intra- and inter-modal relationships across audio and visual modalities, which can play a crucial role in significantly improving the fusion performance over unimodal systems. In particular, we introduce a recursive fusion of a joint cross-attentional model, where a joint audio-visual feature representation is employed in the cross-attention framework in a recursive fashion to progressively refine the feature representations that can efficiently capture the intra-and inter-modal relationships. To further enhance the audio-visual feature representations, we have also explored BLSTMs to improve the temporal modeling of audio-visual feature representations. Extensive experiments are conducted on the Voxceleb1 dataset to evaluate the proposed model. Results indicate that the proposed model shows promising improvement in fusion performance by adeptly capturing the intra-and inter-modal relationships across audio and visual modalities.Comment: Accepted to FG202

    MIS-AVoiDD: Modality Invariant and Specific Representation for Audio-Visual Deepfake Detection

    Full text link
    Deepfakes are synthetic media generated using deep generative algorithms and have posed a severe societal and political threat. Apart from facial manipulation and synthetic voice, recently, a novel kind of deepfakes has emerged with either audio or visual modalities manipulated. In this regard, a new generation of multimodal audio-visual deepfake detectors is being investigated to collectively focus on audio and visual data for multimodal manipulation detection. Existing multimodal (audio-visual) deepfake detectors are often based on the fusion of the audio and visual streams from the video. Existing studies suggest that these multimodal detectors often obtain equivalent performances with unimodal audio and visual deepfake detectors. We conjecture that the heterogeneous nature of the audio and visual signals creates distributional modality gaps and poses a significant challenge to effective fusion and efficient performance. In this paper, we tackle the problem at the representation level to aid the fusion of audio and visual streams for multimodal deepfake detection. Specifically, we propose the joint use of modality (audio and visual) invariant and specific representations. This ensures that the common patterns and patterns specific to each modality representing pristine or fake content are preserved and fused for multimodal deepfake manipulation detection. Our experimental results on FakeAVCeleb and KoDF audio-visual deepfake datasets suggest the enhanced accuracy of our proposed method over SOTA unimodal and multimodal audio-visual deepfake detectors by 17.817.8% and 18.418.4%, respectively. Thus, obtaining state-of-the-art performance.Comment: 8 pages, 3 figure

    Anti-social behavior detection in audio-visual surveillance systems

    Get PDF
    In this paper we propose a general purpose framework for detection of unusual events. The proposed system is based on the unsupervised method for unusual scene detection in web{cam images that was introduced in [1]. We extend their algorithm to accommodate data from different modalities and introduce the concept of time-space blocks. In addition, we evaluate early and late fusion techniques for our audio-visual data features. The experimental results on 192 hours of data show that data fusion of audio and video outperforms using a single modality

    Deep Multimodal Learning for Audio-Visual Speech Recognition

    Full text link
    In this paper, we present methods in deep multimodal learning for fusing speech and visual modalities for Audio-Visual Automatic Speech Recognition (AV-ASR). First, we study an approach where uni-modal deep networks are trained separately and their final hidden layers fused to obtain a joint feature space in which another deep network is built. While the audio network alone achieves a phone error rate (PER) of 41%41\% under clean condition on the IBM large vocabulary audio-visual studio dataset, this fusion model achieves a PER of 35.83%35.83\% demonstrating the tremendous value of the visual channel in phone classification even in audio with high signal to noise ratio. Second, we present a new deep network architecture that uses a bilinear softmax layer to account for class specific correlations between modalities. We show that combining the posteriors from the bilinear networks with those from the fused model mentioned above results in a further significant phone error rate reduction, yielding a final PER of 34.03%34.03\%.Comment: ICASSP 201

    SCANet: A Self- and Cross-Attention Network for Audio-Visual Speech Separation

    Full text link
    The integration of different modalities, such as audio and visual information, plays a crucial role in human perception of the surrounding environment. Recent research has made significant progress in designing fusion modules for audio-visual speech separation. However, they predominantly focus on multi-modal fusion architectures situated either at the top or bottom positions, rather than comprehensively considering multi-modal fusion at various hierarchical positions within the network. In this paper, we propose a novel model called self- and cross-attention network (SCANet), which leverages the attention mechanism for efficient audio-visual feature fusion. SCANet consists of two types of attention blocks: self-attention (SA) and cross-attention (CA) blocks, where the CA blocks are distributed at the top (TCA), middle (MCA) and bottom (BCA) of SCANet. These blocks maintain the ability to learn modality-specific features and enable the extraction of different semantics from audio-visual features. Comprehensive experiments on three standard audio-visual separation benchmarks (LRS2, LRS3, and VoxCeleb2) demonstrate the effectiveness of SCANet, outperforming existing state-of-the-art (SOTA) methods while maintaining comparable inference time.Comment: 14 pages, 3 figure
    corecore