961 research outputs found
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
X-ray astronomical spectroscopy
The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra
X-ray astronomical spectroscopy
The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed
Si(Li) X-ray astronomical spectroscopy
The general considerations involved in the choice of Si(Li) as a non-dispersive spectrometer for X-ray astronomy are discussed. In particular, its adaptation to HEAO-B is described as an example of the space-borne application of Si(Li) technology
Laser frequency comb techniques for precise astronomical spectroscopy
Precise astronomical spectroscopic analyses routinely assume that individual
pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons.
Intra-pixel sensitivity (IPS) variations may already cause small systematic
errors in, for example, studies of extra-solar planets via stellar radial
velocities and cosmological variability in fundamental constants via quasar
spectroscopy, but future experiments requiring velocity precisions approaching
~1 cm/s will be more strongly affected. Laser frequency combs have been shown
to provide highly precise wavelength calibration for astronomical
spectrographs, but here we show that they can also be used to measure IPS
variations in astronomical CCDs in situ. We successfully tested a laser
frequency comb system on the Ultra-High Resolution Facility spectrograph at the
Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded
in a single CCD exposure, we find that the average IPS deviates by <8 per cent
if it is assumed to vary symmetrically about the pixel centre. We also
demonstrate that series of comb exposures with absolutely known offsets between
them can yield tighter constraints on symmetric IPS variations from ~100
pixels. We discuss measurement of asymmetric IPS variations and absolute
wavelength calibration of astronomical spectrographs and CCDs using frequency
combs.Comment: 11 pages, 7 figures. Accepted for publication in MNRA
On the use of electron-multiplying CCDs for astronomical spectroscopy
Conventional CCD detectors have two major disadvantages: they are slow to
read out and they suffer from read noise. These problems combine to make
high-speed spectroscopy of faint targets the most demanding of astronomical
observations. It is possible to overcome these weaknesses by using
electron-multiplying CCDs (EMCCDs). EMCCDs are conventional frame-transfer
CCDs, but with an extended serial register containing high-voltage electrodes.
An avalanche of secondary electrons is produced as the photon-generated
electrons are clocked through this register, resulting in signal amplification
that renders the read noise negligible. Using a combination of laboratory
measurements with the QUCAM2 EMCCD camera and Monte Carlo modelling, we show
that it is possible to significantly increase the signal-to-noise ratio of an
observation by using an EMCCD, but only if it is optimised and utilised
correctly. We also show that even greater gains are possible through the use of
photon counting. We present a recipe for astronomers to follow when setting up
a typical EMCCD observation which ensures that maximum signal-to-noise ratio is
obtained. We also discuss the benefits that EMCCDs would bring if used with the
next generation of extremely large telescopes. Although we mainly consider the
spectroscopic use of EMCCDs, our conclusions are equally applicable to imaging.Comment: 18 figures, 3 tables, 18 page
Use of optical fibers in spectrophotometry
The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers
A near infrared frequency comb for Y+J band astronomical spectroscopy
Radial velocity (RV) surveys supported by high precision wavelength
references (notably ThAr lamps and I2 cells) have successfully identified
hundreds of exoplanets; however, as the search for exoplanets moves to cooler,
lower mass stars, the optimum wave band for observation for these objects moves
into the near infrared (NIR) and new wavelength standards are required. To
address this need we are following up our successful deployment of an H
band(1.45-1.7{\mu}m) laser frequency comb based wavelength reference with a
comb working in the Y and J bands (0.98-1.3{\mu}m). This comb will be optimized
for use with a 50,000 resolution NIR spectrograph such as the Penn State
Habitable Zone Planet Finder. We present design and performance details of the
current Y+J band comb.Comment: Submitted to SPIE, conference proceedings 845
Determining Redshift via Astronomical Spectroscopy
The Doppler effect is a well-known physical phenomenon which results in a change of a wave’s frequency or wavelength due to the motion of its source. Celestial objects in space (stars, galaxies, etc.) also experience a Doppler effect on their emitted electromagnetic radiation called redshift. In this study, redshifts were observed in the spectrographic observations of various celestial objects. This was done using a high-resolution near ultra-violet spectrometer in conjunction with the USU observatory’s 0.5m telescope. The spectrometer was used to measure the absorption spectrum of the bodies and then these absorption spectrums were compared against the Hydrogen emission spectrum. By calculating the difference in wavelength between the body’s absorption spectrum and Hydrogen’s emission spectrum, a redshift value, z, was determined. The redshift values for these celestial bodies were then used to infer additional information about them, such as velocity and distance
Submillimeter Spectrum of Formic Acid
We have measured new submillimeter-wave data around 600 GHz and around 1.1
THz for the 13C isotopologue of formic acid and for the two deuterium
isotopomers; in each case for both the trans and cis rotamer. For cis-DCOOH and
cis-HCOOD in particular only data up to 50 GHz was previously available. For
all species the quality and quantity of molecular parameters has been increased
providing new measured frequencies and more precise and reliable frequencies in
the range of existing and near-future submillimeter and far-infrared
astronomical spectroscopy instruments such as Herschel, SOFIA and ALMA
- …