74,190 research outputs found
The antigenic index: a novel algorithm for predicting antigenic determinants
In this paper, we introduce a computer algorithm which can
be used to predict the topological features of a protein directly
from its primary amino acid sequence. The computer program
generates values for surface accessibility parameters and combines
these values with those obtained for regional backbone
flexibility and predicted secondary structure. The output of this
algorithm, the antigenic index, is used to create a linear surface
contour profile of the protein. Because most, if not all,
antigenic sites are located within surface exposed regions of
a protein, the program offers a reliable means of predicting
potential antigenic determinants. We have tested the ability of
this program to generate accurate surface contour profiles and
predict antigenic sites from the linear amino acid sequences
of well-characterized proteins and found a strong correlation
between the predictions of the antigenic index and known structural
and biological data
The effects of symmetry on the dynamics of antigenic variation
In the studies of dynamics of pathogens and their interactions with a host
immune system, an important role is played by the structure of antigenic
variants associated with a pathogen. Using the example of a model of antigenic
variation in malaria, we show how many of the observed dynamical regimes can be
explained in terms of the symmetry of interactions between different antigenic
variants. The results of this analysis are quite generic, and have wider
implications for understanding the dynamics of immune escape of other
parasites, as well as for the dynamics of multi-strain diseases.Comment: 21 pages, 4 figures; J. Math. Biol. (2012), Online Firs
The effect of host heterogeneity and parasite intragenomic interactions on parasite population structure
Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability to predict how an infection can spread through a host population and for the design of effective vaccines to combat infection and disease. Here, we examine how the genetic structure of parasite populations responds to host genetic heterogeneity. We consider the well-characterized molecular specificity of major histocompatibility complex binding of antigenic peptides to derive deterministic and stochastic models. We use these models to ask, firstly, what conditions favour the evolution of generalist parasite genotypes versus specialist parasite genotypes? Secondly, can parasite genotypes coexist in a population? We find that intragenomic interactions between parasite loci encoding antigenic peptides are pivotal in determining the outcome of evolution. Where parasite loci interact synergistically (i.e. the recognition of additional antigenic peptides has a disproportionately large effect on parasite fitness), generalist parasite genotypes are favoured. Where parasite loci act multiplicatively (have independent effects on fitness) or antagonistically (have diminishing effects on parasite fitness), specialist parasite genotypes are favoured. A key finding is that polymorphism is not stable and that, with respect to functionally important antigenic peptides, parasite populations are dominated by a single genotype
Insight into highly conserved H1 subtype-specific epitopes in influenza virus hemagglutinin
Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA) that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutralizing activities against H1 subtype influenza viruses, and determined the complex structure of HA derived from a 2009 pandemic virus A/Korea/01/2009 (KR01) and the Fab fragment from H1-specific monoclonal antibody GC0587. The overall structure of the complex was essentially identical to the previously determined KR01 HA-Fab0757 complex structure. Both Fab0587 and Fab0757 recognize readily accessible head regions of HA, revealing broadly shared and conserved antigenic determinants among H1 subtypes. The beta-strands constituted by Ser110-Glu115 and Lys169-Lys170 form H1 epitopes with distinct conformations from those of H1 and H3 HA sites. In particular, Glu112, Glu115, Lys169, and Lys171 that are highly conserved among H1 subtype HAs have close contacts with HCDR3 and LCDR3. The differences between Fab0587 and Fab0757 complexes reside mainly in HCDR3 and LCDR3, providing distinct antigenic determinants specific for 1918 pdm influenza strain. Our results demonstrate a potential key neutralizing epitope important for H1 subtype specificity in influenza virus
Clathrin structure characterized with monoclonal antibodies. I. Analysis of multiple antigenic sites.
Three monoclonal antibodies that react with previously undefined antigenic determinants on the clathrin molecule have been produced and characterized. They were isolated from a fusion between myeloma cells and popliteal lymphocytes from SJL mice that had received footpad injections of human brain clathrin. This protocol was chosen to favor the production of antibodies to poorly immunogenic proteins and thereby increase the repertoire of anti-clathrin monoclonal antibodies. One antibody (X16) reacts preferentially with the heavier of the two clathrin light chains (LCa) when it is not associated with heavy chain. This specificity is different from that of the anti-LCa antibody, CVC.6, which has preferential reactivity with heavy chain-associated LCa. In addition, X16 and CVC.6 bound simultaneously to LCa, confirming that they react with different sites. The other two antibodies produced, X19 and X22, react with two different determinants on the clathrin heavy chain, based on immunoprecipitation, Western blot, and binding studies. Competitive binding studies with anti-clathrin monoclonal antibodies showed that they define a total of five distinct antigenic determinants on bovine clathrin
Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein
Computer simulation of the
conformations of short antigenic peptides (&lo
residues) either free or bound to their receptor,
the major histocompatibility complex (MHC)-
encoded glycoprotein H-2 Ld, was employed to
explain experimentally determined differences
in the antigenic activities within a set of related
peptides. Starting for each sequence from the
most probable conformations disclosed by a
pattern-recognition technique, several energyminimized
structures were subjected to molecular
dynamics simulations (MD) either in vacuo
or solvated by water molecules. Notably, antigenic
potencies were found to correlate to the
peptides propensity to form and maintain an
overall a-helical conformation through regular
i,i + 4 hydrogen bonds. Accordingly, less active
or inactive peptides showed a strong tendency
to form i,i+3 hydrogen bonds at their Nterminal
end. Experimental data documented
that the C-terminal residue is critical for interaction
of the peptide with H-2 Ld. This finding
could be satisfactorily explained by a 3-D
Q.S.A.R. analysis postulating interactions between
ligand and receptor by hydrophobic
forces. A 3-D model is proposed for the complex
between a high-affinity nonapeptide and the H-
2 Ld receptor. First, the H-2 Ld molecule was
built from X-ray coordinates of two homologous
proteins: HLA-A2 and HLA-Aw68, energyminimized
and studied by MD simulations. With
HLA-A2 as template, the only realistic simulation
was achieved for a solvated model with minor
deviations of the MD mean structure from
the X-ray conformation. Water simulation of the
H-2 Ld protein in complex with the antigenic
nonapeptide was then achieved with the template-
derived optimal parameters. The bound
peptide retains mainly its a-helical conformation
and binds to hydrophobic residues of H-2
Ld that correspond to highly polymorphic positions
of MHC proteins. The orientation of the
nonapeptide in the binding cleft is in accordance
with the experimentally determined distribution
of its MHC receptor-binding residues
(agretope residues). Thus, computer simulation was successfully employed to explain functional
data and predicts a-helical conformation
for the bound peptid
Localization of nucleocapsid (NP) antigenic sites by using a panel of monoclonal antibodies against the recombinant NP of Newcastle disease virus
Three different NP antigenic sites were identified using deleted truncated
NP mutants purified from Escherichia coli. One of the antigenic sites was located within
amino acids 441 to 489 of C-terminal. Two other antigenic sites located within the Nterminal
of NP protein from amino acids 26 to 121 and 122 to 375 residues. Identification
of NP antigenic sites not only elucidates the NP sequences that are responsible in eliciting
immune response, indirectly it also revealed which sequences are exposed on the NP
herringbone-like structure
Phase and antigenic variation in mycoplasmas
With their reduced genome bound by a single membrane, bacteria of the Mycoplasma species represent some of the simplest autonomous life forms. Yet, these minute prokaryotes are able to establish persistent infection in a wide range of hosts, even in the presence of a specific immune response. Clues to their success in host adaptation and survival reside, in part, in a number of gene families that are affected by frequent, stochastic genotypic hanges. These genetic events alter the expression, the size and the antigenic structure of abundant surface proteins, thereby creating highly versatile and dynamic surfaces within a clonal population. This phenomenon provides these wall-less pathogens with a means to escape the host immune response and to modulate surface accessibility by masking and unmasking stably expressed components that are essential in host interaction and survival
Dynamical correlations in the escape strategy of Influenza A virus
The evolutionary dynamics of human Influenza A virus presents a challenging
theoretical problem. An extremely high mutation rate allows the virus to
escape, at each epidemic season, the host immune protection elicited by
previous infections. At the same time, at each given epidemic season a single
quasi-species, that is a set of closely related strains, is observed. A
non-trivial relation between the genetic (i.e., at the sequence level) and the
antigenic (i.e., related to the host immune response) distances can shed light
into this puzzle. In this paper we introduce a model in which, in accordance
with experimental observations, a simple interaction rule based on spatial
correlations among point mutations dynamically defines an immunity space in the
space of sequences. We investigate the static and dynamic structure of this
space and we discuss how it affects the dynamics of the virus-host interaction.
Interestingly we observe a staggered time structure in the virus evolution as
in the real Influenza evolutionary dynamics.Comment: 14 pages, 5 figures; main paper for the supplementary info in
arXiv:1303.595
- …