2,308 research outputs found

    Multiple solutions of coupled-cluster equations for PPP model of [10]annulene

    Get PDF
    Multiple (real) solutions of the CC equations (corresponding to the CCD, ACP and ACPQ methods) are studied for the PPP model of [10]annulene, C_{10}H_{10}. The long-range electrostatic interactions are represented either by the Mataga--Nishimoto potential, or Pople's R^{-1} potential. The multiple solutions are obtained in a quasi-random manner, by generating a pool of starting amplitudes and applying a standard CC iterative procedure combined with Pulay's DIIS method. Several unexpected features of these solutions are uncovered, including the switching between two CCD solutions when moving between the weakly and strongly correlated regime of the PPP model with Pople's potential.Comment: 5 pages, 4 figures, RevTeX

    Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped-molecule connected to graphene nanoribbon electrodes

    Full text link
    We study all-carbon-hydrogen molecular transistors where zigzag graphene nanoribbons play the role of three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that the proposed nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration that ensures destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.Comment: 5 pages, 4 color figures, PDFLaTeX, slightly expanded version of the published PRL articl

    Controlling quantum transport through a single molecule

    Full text link
    We investigate multi-terminal quantum transport through single monocyclic aromatic annulene molecules, and their derivatives, using the nonequilibrium Green function approach in the self-consistent Hartree-Fock approximation. A new device concept, the Quantum Interference Effect Transistor (QuIET) is proposed, exploiting perfect destructive interference stemming from molecular symmetry, and controlling current flow by introducing decoherence and/or elastic scattering that break the symmetry. This approach overcomes the fundamental problems of power dissipation and environmental sensitivity that beset many nanoscale device proposals.Comment: 4 pages, 5 figure

    Tunable Optoelectronic Properties of Triply-Bonded Carbon Molecules with Linear and Graphyne Substructures

    Full text link
    In this paper we present a detailed computational study of the electronic structure and optical properties of triply-bonded hydrocarbons with linear, and graphyne substructures, with the aim of identifying their potential in opto-electronic device applications. For the purpose, we employed a correlated electron methodology based upon the Pariser-Parr-Pople model Hamiltonian, coupled with the configuration interaction (CI) approach, and studied structures containing up to 42 carbon atoms. Our calculations, based upon large-scale CI expansions, reveal that the linear structures have intense optical absorption at the HOMO-LUMO gap, while the graphyne ones have those at higher energies. Thus, the opto-electronic properties depend on the topology of the {graphyne substructures, suggesting that they can be tuned by means of structural modifications. Our results are in very good agreement with the available experimental data.Comment: main text 29 pages + 4 figures + 1 TOC graphic (included), supporting information 21 page

    Multiterminal single-molecule--graphene-nanoribbon thermoelectric devices with gate-voltage tunable figure of merit ZT

    Full text link
    We study thermoelectric devices where a single 18-annulene molecule is connected to metallic zigzag graphene nanoribbons (ZGNR) via highly transparent contacts that allow for injection of evanescent wave functions from ZGNRs into the molecular ring. Their overlap generates a peak in the electronic transmission, while ZGNRs additionally suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with suppression of phonon transport through ZGNR-molecule-ZGNR structure, yield the thermoelectric figure of merit ZT ~ 0.5 at room temperature and 0.5 < ZT < 2.5 below liquid nitrogen temperature. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show how the transmission resonance can also be manipulated by the voltage applied to a third ZGNR electrode, acting as the top gate covering molecular ring, to tune the value of ZT.Comment: 5 pages, 4 figures, PDFLaTe

    Complete spectrum of the infinite-UU Hubbard ring using group theory

    Full text link
    We present a full analytical solution of the multiconfigurational strongly-correlated mixed-valence problem corresponding to the NN-Hubbard ring filled with N1N-1 electrons, and infinite on-site repulsion. While the eigenvalues and the eigenstates of the model are known already, analytical determination of their degeneracy is presented here for the first time. The full solution, including degeneracy count, is achieved for each spin configuration by mapping the Hubbard model into a set of Huckel-annulene problems for rings of variable size. The number and size of these effective Huckel annulenes, both crucial to obtain Hubbard states and their degeneracy, are determined by solving a well-known combinatorial enumeration problem, the necklace problem for N1N-1 beads and two colors, within each subgroup of the CN1C_{N-1} permutation group. Symmetry-adapted solution of the necklace enumeration problem is finally achieved by means of the subduction of coset representation technique [S. Fujita, Theor. Chim. Acta 76, 247 (1989)], which provides a general and elegant strategy to solve the one-hole infinite-UU Hubbard problem, including degeneracy count, for any ring size. The proposed group theoretical strategy to solve the infinite-UU Hubbard problem for N1N-1 electrons, is easily generalized to the case of arbitrary electron count LL, by analyzing the permutation group CLC_L and all its subgroups.Comment: 31 pages, 4 figures. Submitte
    corecore