466,654 research outputs found
Theory of Quantum Annealing of an Ising Spin Glass
Probing the lowest energy configuration of a complex system by quantum
annealing was recently found to be more effective than its classical, thermal
counterpart. Comparing classical and quantum Monte Carlo annealing protocols on
the random two-dimensional Ising model we confirm the superiority of quantum
annealing relative to classical annealing. We also propose a theory of quantum
annealing, based on a cascade of Landau-Zener tunneling events. For both
classical and quantum annealing, the residual energy after annealing is
inversely proportional to a power of the logarithm of the annealing time, but
the quantum case has a larger power which makes it fasterComment: RevTex, 8 pages, 3 figure
Faster annealing schedules for quantum annealing
New annealing schedules for quantum annealing are proposed based on the
adiabatic theorem. These schedules exhibit faster decrease of the excitation
probability than a linear schedule. To derive this conclusion, the asymptotic
form of the excitation probability for quantum annealing is explicitly obtained
in the limit of long annealing time. Its first-order term, which is inversely
proportional to the square of the annealing time, is shown to be determined
only by the information at the initial and final times. Our annealing schedules
make it possible to drop this term, thus leading to a higher order (smaller)
excitation probability. We verify these results by solving numerically the
time-dependent Schrodinger equation for small size systemsComment: 10 pages, 5 figures, minor correction
Variable Annealing Length and Parallelism in Simulated Annealing
In this paper, we propose: (a) a restart schedule for an adaptive simulated
annealer, and (b) parallel simulated annealing, with an adaptive and
parameter-free annealing schedule. The foundation of our approach is the
Modified Lam annealing schedule, which adaptively controls the temperature
parameter to track a theoretically ideal rate of acceptance of neighboring
states. A sequential implementation of Modified Lam simulated annealing is
almost parameter-free. However, it requires prior knowledge of the annealing
length. We eliminate this parameter using restarts, with an exponentially
increasing schedule of annealing lengths. We then extend this restart schedule
to parallel implementation, executing several Modified Lam simulated annealers
in parallel, with varying initial annealing lengths, and our proposed parallel
annealing length schedule. To validate our approach, we conduct experiments on
an NP-Hard scheduling problem with sequence-dependent setup constraints. We
compare our approach to fixed length restarts, both sequentially and in
parallel. Our results show that our approach can achieve substantial
performance gains, throughout the course of the run, demonstrating our approach
to be an effective anytime algorithm.Comment: Tenth International Symposium on Combinatorial Search, pages 2-10.
June 201
Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance
The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO
interface is important to interpret the strong annealing temperature dependence
of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel
junctions, which increases with annealing temperature from 20% after annealing
at 200C up to a maximum value of 112% after annealing at 350C. While the well
defined nearest neighbor ordering indicating crystallinity of the MgO barrier
does not change by the annealing, a small amount of interfacial Fe-O at the
lower Co-Fe-B / MgO interface is found in the as grown samples, which is
completely reduced after annealing at 275C. This is accompanied by a
simultaneous increase of the Fe magnetic moment and the tunnel
magnetoresistance. However, the TMR of the MgO based junctions increases
further for higher annealing temperature which can not be caused by Fe-O
reduction. The occurrence of an x-ray absorption near-edge structure above the
Fe and Co L-edges after annealing at 350C indicates the recrystallization of
the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been
suggested to be responsible for the further increase of the TMR above 275C.
Simultaneously, the B concentration in the Co-Fe-B decreases with increasing
annealing temperature, at least some of the B diffuses towards or into the MgO
barrier and forms a B2O3 oxide
- …