38,849 research outputs found
Ab Initio Study of Phase Stability in Doped TiO2
Ab-initio density functional theory (DFT) calculations of the relative
stability of anatase and rutile polymorphs of TiO2 were carried using
all-electron atomic orbitals methods with local density approximation (LDA).
The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative
to the anatase phase in pristine material. From computational analysis of the
formation energies of Si, Al, Fe and F dopants of various charge states across
different Fermi level energies in anatase and in rutile, it was found that the
cationic dopants are most stable in Ti substitutional lattice positions while
formation energy is minimised for F- doping in interstitial positions. All
dopants were found to considerably stabilise anatase relative to the rutile
phase, suggesting the anatase to rutile phase transformation is inhibited in
such systems with the dopants ranked F>Si>Fe>Al in order of anatase
stabilisation strength. Al and Fe dopants were found to act as shallow
acceptors with charge compensation achieved through the formation of mobile
carriers rather than the formation of anion vacancies
Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers
This study deals with the synthesis of TiO2 supported Moroccan palygorskite fibers and their use as photocatalyst for the removal of Orange G pollutant from wastewater. The TiO2-palygorskite nanocomposite synthesis was accomplished according to a colloidal route involving a cationic surfactant as template (hexadecyltrimethylammonium bromide) assuring hence organophilic environment for the formation of TiO2 nanoparticles. The clay minerals samples were characterized before and after functionalization with TiO2. Anatase crystallizes above ca. 450 °C and remarkably remains stable up to 900 °C. In contrast, pure TiO2 xerogel obtained from titanium tetraisopropoxide (TTIP) showed before calcination a nanocrystalline structure of anatase. By increasing the temperature, anatase readily transforms into rutile beyond 600 °C. The remarkable stability at high temperature of anatase particles immobilized onto palygorskite microfibers was due to the hindrance of particles growth by sintering. Homogeneous monodisperse distribution of anatase particles with an average size of 8 nm was found by TEM and XRD onto palygorskite fibers. This anatase particle size remains below the nucleus critical size (ca. 11 nm) required for anatase–rutile transition. The TiO2 supported palygorskite sample annealed in air at 600 °C for 1 h exhibits the highest photocatalytic activity towards the degradation of Orange G compared to nanocomposite samples prepared under different conditions as well as pure TiO2 powders obtained from the xerogel route or commercially available as Degussa P25
Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications
TiO2 thin films were deposited under atmospheric pressure by MOCVD in the temperature range 400–600 °C on stainless steel and Si(100) substrates. Titanium tetraisopropoxide (TTIP) was used as Ti and O source. Single-phased anatase and bi-phased (anatase/rutile) coatings with controlled composition have been deposited depending on the temperature and the TTIP mole fraction. The films grown on stainless steel at low temperature (b420 °C) and low TTIP mole fraction (b10−4) are constituted of pure anatase and they exhibit a high photocatalytic activity under UV light and a high hydrophilicity. In the temperature range 430–600 °C the rutile starts growing leading to anatase/rutile mixtures and subsequently to a progressive decrease of both photocatalytic activity and wettability. Correlations between functional properties and microstructure of the films are discussed
Decoration of titania nanofibres with anatase nanoparticles as efficient photocatalysts for decomposing pesticides and phenols
Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology
Synthesis of titanium dioxide nanoparticles and their application for simultaneous photocatalytic oxidation of As(III) and sorption of As(V)
In this study, the effectiveness of TiO2 nanoparticles in removing arsenic species from water was enhanced by the photocatalytic oxidation by conversion of As(III) to As(V), which adsorbs more strongly onto the solid phase of adsorbent than As(III). Anatase nanoparticles were synthesized by using sol-gel method and the synthesized nanoparticles were characterized by X-ray diffraction and scanning electron microscopy. Batch adsorption experiment was carried out to analyze As(III) removal capacity of the anatase nanoparticles with and without presence of photocatalytic oxidation reaction. The maximum % of removal of As(III) was found ~56% at pH 6, respectively, when 1 g l-1 anatase nanoparticles were used at the As0 1 ppm without presence of photocatalytic oxidation reaction. In contrast, over 94.7% As(V) have been removed by anatase nanoparticles in a period of 120 min UV-light irradiation. Using photocatalytic oxidation process, As(III) removal from water was improved by UV-irradiation
- …