39,528 research outputs found
Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams
The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In
this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the longstanding and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors
High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations
We recently developed the electron force field (eFF) method for practical nonadiabatic electron dynamics simulations of materials under extreme conditions and showed that it gave an excellent description of the shock thermodynamics of hydrogen from molecules to atoms to plasma, as well as the electron dynamics of the Auger decay in diamondoids following core electron ionization. Here we apply eFF to the shock thermodynamics of lithium metal, where we find two distinct consecutive phase changes that manifest themselves as a kink in the shock Hugoniot, previously observed experimentally, but not explained. Analyzing the atomic distribution functions, we establish that the first phase transition corresponds to (i) an fcc-to-cl16 phase transition that was observed previously in diamond anvil cell experiments at low temperature and (ii) a second phase transition that corresponds to the formation of a new amorphous phase (amor) of lithium that is distinct from normal molten lithium. The amorphous phase has enhanced valence electron-nucleus interactions due to localization of electrons into interstitial locations, along with a random connectivity distribution function. This indicates that eFF can characterize and compute the relative stability of states of matter under extreme conditions (e.g., warm dense matter)
Recommended from our members
Distinctive cellular response to aluminum based adjuvants.
Aluminum-based adjuvants (ABAs) are used in human vaccines to enhance the magnitude of protective immune responses elicited against specific pathogens. One hypothesis is that stress signals released by aluminum-exposed necrotic cells play a role in modulating an immune response that contributes to the adjuvant's effectiveness. We hypothesized that aluminum adjuvant-induced necrosis would be similar irrespective of cellular origin or composition of the adjuvant. To test this hypothesis, human macrophages derived from peripheral monocytic cell line (THP-1) and cells derived from the human brain (primary astrocytes) were evaluated. Three commercially available formulations of ABAs (Alhydrogel, Imject alum, and Adju-Phos) were examined. Alum was also used as a reference. Cell viability, reactive oxygen species formation, and production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were quantified. Cells were exposed to different concentrations (10-100 μg/mL) of the adjuvants for 24 h or 72 h. The two FDA approved adjuvants (Alhydrogel and Adju-Phos) decreased cell viability in both cell types. At the 72 h time point, the decrease in viability was accompanied with increased ROS formation. The size of the aluminum agglomerates was not relatable to the changes observed. After exposure to ABAs, astrocytes and macrophages presented a distinct profile of cytokine secretion which may relate to the function and unique characteristics of each cell type. These variations indicate that aluminum adjuvants may have differing capability of activating cells of different origin and thus their utility in specific vaccine design should be carefully assessed for optimum efficacy
Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant.
Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-Îł levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-Îł production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis
Spin dependent transport in organic light-emitting diodes
Electrically Detected Magnetic Resonance (EDMR) was used to study a series of
multilayer organic devices based on aluminum (III) 8-hydroxyquinoline. These
devices were designed to identify the micoscopic origin of different spin
dependent process, i.e. hopping and exciton formation. EDMR is demonstrated to
probe molecular orbitals of charge, and thus indirectly explore interfaces,
exciton formation, charge accumalation and electric fields in operating organic
based devices
Smooth Flow in Diamond: Atomistic Ductility and Electronic Conductivity
Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound implications for elucidating and predicting diamond’s anomalous behaviors at extreme conditions
Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by the presence of intracellular aggregates of tau protein and neuronal loss leading to cognitive and motor impairment. Occurrence is mostly sporadic, but rare family clusters have been described. Although the etiopathology of PSP is unknown, mutations in the MAPT/tau gene and exposure to environmental toxins can increase the risk of PSP. Here, we used cell models to investigate the potential neurotoxic effects of heavy metals enriched in a highly industrialized region in France with a cluster of sporadic PSP cases. We found that iPSC-derived iNeurons from a MAPT mutation carrier tend to be more sensitive to cell death induced by chromium (Cr) and nickel (Ni) exposure than an isogenic control line. We hypothesize that genetic variations may predispose to neurodegeneration induced by those heavy metals. Furthermore, using an SH-SY5Y neuroblastoma cell line, we showed that both heavy metals induce cell death by an apoptotic mechanism. Interestingly, Cr and Ni treatments increased total and phosphorylated tau levels in both cell types, implicating Cr and Ni exposure in tau pathology. Overall, this study suggests that chromium and nickel could contribute to the pathophysiology of tauopathies such as PSP by promoting tau accumulation and neuronal cell death
- …